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The Major goal of this program is to study methods for the nondestructive characterization of
mechanical properties of two-phase metal-matrix composites such as discontinuous SiC-reinforced
aluminum alloys. The methods to be studied are based on the physical nonlinear elastic behavior
of solids and utilize measurements of the elastic as well as the acoustoelastic constants. The
objectives are to establish both experimentally and theoretically relationships between those
parameters which can be measured nondestructively and the percentages of second phase in
two-r"ase systems. Mechanical properties of these systems are derived from the presence of
reinforcement second phase in the matrix.

The research accomplished during contract No. DAALO3-88-K-0096 of The Army Research
Office program is documented in details in 4 theses (1 - 4) and 8§ papers (S - 12). Abstracts of
these theses and reprints or preprints of these papers are attached in appendix A. The major
accomplishments obtained under this program are, however, summarized in the following.

A. Texture

Texture is the reason for the direction dependence of materials properties. It is developed
during the plastic deformation and heat treatment during manufacturing. Itis characterized by the
fourth-order expansion coefficients of the orientation distribution function (ODF), C1 14 and Cl12,
and C134 In two-phase materials, however, the situation is more complicated where the
properties, the shape, the volume fraction and the orientation of each phase influence the
macroscopic behavior.

In this study (1, 5, 6), an ultrasonic method is developed for the nondestructive

characterization of texture in metal-matrix composites. The method utilizes the measurements of




the six independent ultrasonic velocities Vij and the formulation given by Bunge. The examined
composites are the siicon carbide (Si-C)-particle-reinforced aluminum 8091, 7094, and 6061
metal-matrix composites. The fourth-order expansion coefficients of the orientation distribution
function are found to change linearly as a function of the SiC content. Also in this study, the
relationship between elastic anistropy and texture in metal-matrix composites has been developed
under certain conditions. Linear correlations between anisotropy described by Young's moduli
and texture determined by orientation distribution function expansion coefficients are obtained, and
found to confirm developed relationships for two-phase metal-matrix composites. These results
show that ultrasonic measurements provide a viable technique for the characterization of texture
and elastic anisotropy in these materials.
B. Elastic Properties and Elastic Anisotropy
In this investigation (2, 7, 8, 11), longitudinal and shear ultrasonic velocities have been

measured in aluminum based metal matrix composites containing either SiC-particles or alumina
fibers and particles as the reinforcements. Three types (extruded, pressed. squeeze cast) of
composites have been investigated. Also, based on microstructural studies, models have been
developed in order to predict and explain the elastic properties of these composites. From the
experimental measurements as well as the comparison between measured and calculated elastic
moduli the following conclusions are obtained.
1. Extruded Composites

a) For relatively low volume percentage of reinforcement, up to 20%, the elastic moduli
increase linearly with SiC-particle content.

b) The overall increase in elastic moduli due to the reinforcement can be well predicted by a
model assuming dilute concentration of particles.

¢) The extrusion direction is elastically stiffer than the other two directions.

d) The higher value of Young's modulus along the extrusion direction is partly due to the
aligned particle free regions created during manufacturing, and partly due to texture in the

aluminum matrix.




2. Pressed Composites

a) For the high volume fraction of SiC-particles, up to 40%, the increase in elastic moduli
with particle content is not linear and deviates significantly towards higher values.

b) The model assuming dilute concentration of particles fails completely to predict the
increase in elastic moduli.

c¢) The high values in elastic moduli can be attributed to the increased interaction between
particles as the particle content becomes higher.

d) The elastic moduli in the compression direction is lower than in the directions in the plane of
the plate.
3. Squeeze Cast Composites

a) The elastic moduli increase with the alumina particle content, whereas the elastic
anisotropies between directions in the plane of fibers and normal to this plane decrease with
the particle content.

b) The overall increase in elastic moduli as well as the elastic anisotropies can be predicted by
a model assuming no interaction between particles and fibers.

c¢) The planar-random alignment of fibers makes the composites stiffer in that plane.
C. Manufacturing
In this work, the powder metallurgy process has been successfully implemented in the processing
of aluminum metal matrix composites containing up to 30 volume percent of silicon carbide
particulate, and up to 20 volume percent silicon carbide whiskers (3). The composites processed
have been densified to above 97 percent of their theoretical density, which is comparable to those
obtained from commercial sources. The stiffness properties of these composites have been
evaluated using flexure and compression mechanical tests as well as ultrasonic measurements, and
are found to match those of commerical composites.

Theoretical calculations of the Young's modulus based on the Hashin-Strikman and the

Eshelby models are found to be in good agreement with the experimental results for particulate

content of 15 percent or less. At higher percentages of reinforcement, however, both models




underpredict the stiffnesses. For the whisker reinforced composites, the Eshelby model predicts
the stiffnesses better than the shear large model. The stiffnesses predicted by the composite
cylinders model are also found to agree pretty well with experimental results.
D. Nonlinear elastic Effects

In this study, the temperature dependances of nonlinear effects effects are investigated by
measuring the acoustoelastic constants at different temperatures using ultrasonic time of flight
measurements (4, 9, 12). These constants are determined in the alurninum alloys AlMg 2, 7064,
and 8091 as well as in SiC-particle reinforced metal matrix composites based on the aluminum
alloys 7064 and 8091. In the metal matrix composite specimens, the acoustic nonlinearity
parameter is also measured using the harmonic generation technique. The results show the
following.

a) In all materials investigated, the acoustoelastic constants show a linear temperature
dependance. In single phase alloys, the third order elastic constants, calculated from
acoustoelastic constants show an increase in magnitude for the constants 1 and m with temperature.
However, the increase in the constant 1 is stronger. The third order elastic constant n is not
significantly influenced by temperature. In the case of the two phase metal matrix composites,
temperature changes affect the three third order elastic constants decreases with increasing
temperature.

b) The temperature dependence of the acoustoelastic effect confirms the linear relationship
between stresses in the material and the temperature dependance of the longitudinal velocity found
by Salama and Long. The parameter K, which characterizes the magnitude of the
stress-temperature dependance of ultrasonic velocities, is found to be significantly influenced by
the base material as well as the alloying elements contained.

c¢) The acoustic nonlinearity parameter, which is a measure for the material's deviation from the
ideal Hookean behavior, is calculated using the second and third order elastic constants for all
specimens investigated. Similar to the behavior of the parameter K, the value of the nonlinearity

parameter is found to depend strongly on the base material as well as the reinforcements.




d) Intwo phase materials, it is not sufficient to realate changes in the nonlinearity parameter to

lattice distortions only. Since the determination of 3 involves the ratio between third and second
order elastic constants, changes in the elastic moduli, due to the presence of second phase, are to
be taken into account. In the case of coherent precipitates, where increases in the elastic moduli are
negligible, the behavior of the nonlinearity parameter is dominated by the lattice distortions. Earlier
studies by Razvi et al. revealed an increase in the nonlinearity parameter with the volume fraction
of second phase particles in such matenals. However, in the metal matrix composites investigated
in the present study, the behavior of the nonlinearity parameter is dominated by the increase of the
elastic moduli.

e) Values of calculated nonlinearity parameters as well as those directly measured are found to
decrease linearly with increasing content of second phase particles. Also the presence of
reinforcement particles changes the temperature dependance of the nonlinearity parameter in the
metal-matrix composites. In contrast to the behavior in single phase alloys, its value decreases
with increasing temperature. Changes in the distortion of the matrix are believed to be responsible
for this opposite behavior. A temperature increase leads to relaxation of the thermal stresses which
are always present in metal matrix composites, due to the mismatch of the coefficients of thermal
expansion of the matrix and the reinforcement materials. The relaxation of these stresses reduces
the distortion of the matrix and, thus, the value of the nonlinearity parameter decreases.

E. Scanning Acoustic Microscope (SAM) Studies

In addition to the above macroscopic studies, preliminary acoustic microscopy studies (13)
on samples of Al-8091 and Al-7064 show that the SAM has no difficulty at 1.0 GHz in resolving
the particles in both composites. The resolution in the GHz range is on the order of a micron, so
that detection of the particles is not a difficulty. In the characterization of the interface the
assumption is made that changes in the stress field will produce measurable changes in the region
of the interface and there will be a corresponding change in the stress between the two phases due
to the difference in the thermally induced strain between them. This will cause changes in the

sound propagation properties in the stressed regions. Although these changes are small they




depend on the properties of the interface and can be measured.

The affected region can range from nanometers to micrometers in thickness even in the GHz
range and the properties will vary throughout only one acoustic wavelength. Point to point
changes along the boundary, however, cause significant changes in the shape of the fringe pattern
due to the changing of the boundary conditions at the reflecting interface. In addition, many of the
particles exhibit surface wave scattering fringes over several wavelengths, indicating higher phase

sensitivity.
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Abstract

Many important material properties are of nonlinear nature. Among them are the stress-
temperature dependance of ultrasonic velocities, the distortion of elastic waves by the
generation of higher harmonics, and the thermal expansion. These effects are characterized
quandtatively by measurements of the acoustoelastic constants, the acoustic nonlinearity
parameter, and the coefficient of thermal expansion.

In this study, the temperature dependances of nonlinear ultrasonic effects are
investigated in the cemented carbide WC-Co, the ferritic steel 24 CtMoV 5 5, the austenitic
steel X6 CrNi 18 11, the aluminum alloys AIMg 3, Al 7064 and Al 8091 as well as in
metal-matrix composites consisting of Al 7064 and Al 8091 matrices and SiC-particles.
The results show that the magnitude of acoustic nonlinearity depends on the base material,
alloying elements, and microstructure. It increases with the temperature in single phase
materials whereas it decreases in metal-matrix composites. The various contributions to the
acoustic nonlinearity are analyzed qualitatively and possible explanadons for its behavior in
metal-matrix composites are discussed.
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Abstract

Textures or preferred orientations of single crystals in polycrystalline materials are
developed by heat treatment and deformation processes like rolling, drawing and
extrusion. Thus magnetic, elastic and plastic properties become directionally dependent.
This can yield desirable behavior, but it can have also negative effects. In both cases a
nondcstrucﬁvc determination of the texture and its consequences for materials behavior is

of great interest.

In this study texture is analyzed by determining the fourth-order expansion
coefficients of the orientation distribution function from the measured ultrasonic
velocities of different wave modes. The results obtained for rolled ferritic steel sheets,
rolled ferritic steel plates and for extruded metal-matrix composites of the aluminium
alloys AI-8091, Al-7064 and Al-6061 with silicon carbide particle reinforcements show
that ultrasonics provide an efficient nondestructive method of texture analysis in the bulk
as well as on the surface of these materials. The expansion coefficients determined for
the ferritic steels agree qualitatively with those determined by x-ray diffraction which is a
common nondestructive technique for texture analysis. For the metal-matrix composites
the expansion coefficients have been determined under the assumption that only the
Al-matrix is textured. The results also show that the fourth-order expansion coefficients

allow the evaluation of the elastic and the plastic behavior of the examined specimens.
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ABSTRACT

The effects of varying the reinforcement type and content on the elastic behavior of
aluminum / silicon carbide composites have been investigated in order to develop
relationships to be used in contolling the integrity of the composites. A canless powder
metallurgy (PM) process was successfully developed for the in-house manufacture of the
MMC specimens . Composite specimens with up to 30 v/o particulates and up t0 20 v/o
whiskers were fabricated using Al 6061 as the base metal. The elastic moduli of these
MMCs were characterized using ultrasonic velocity measurements as well as mechanical
testing involving flexural and compressive tests. The measured moduli were also
compared with model predictions.

The results indicate that the addition of the particulate or the whisker reinforcements
increase the elastic moduli as well as the elastic anisotropy of the MMCs. The composites
were elastically stiffer in the plane perpendicular to the hot pressing direction than in the
pressing direction and also exhibited wansverse isozopy about the pressing axis. While the
anisotropy of the particulate reinforced MMCs is attributed to the uneven distribution of the
reinforcement along the different directions, the anisotopy of the whisker reinforced MMC
is traced to the planar orientation of the whiskers in the plane perpendicular to the pressing
direction. Also, it is found that the substitution of particulate reinforcement by whiskers
does not improve the elastic stiffness of the MMCs for this method of composite

manufacture.
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ABSTRACT

Conventionally, metal matrix composites (MMC) are reinforced with
either particles or fibers, but lately, a new class of composites has emerged,
where a mixture of particles and fibers is used as a reinforcement. The particles
are present to improve the overall mechanical and thermal properties, whereas
the fibers introduce the directionality often desired in some applications.

The elastic behavior of three composites with different matrices and
volume fraction of particles (9,13 and 17%), but the same fiber content (6%),
has been characterized using ultrasonic velocity measurements. The results
show that the elastic moduli increase with particle content and that the
composites are elastically stiffer in the directions of the plane of the fibers than
in the direction normal to that plane.

A model is developed to explain the observed elastic moduli of these
composites. This model uses the results of theories presented by Ledbetter and
Datta, for spherical inclusions, and by Hashin and Rosen, for aligned fibers. It
also includes an average procedure suggested by Christensen and Waals. The
agreement between measured and calculated elastic moduli is found to be very
good and the elastic anisotropies observed in these composites could also be
predicted.

Elastic moduli are also determined using ultrasonic velocity
measurements for two series of extruded MMC's and one series of pressed
MMC's. These composites are reinforced with SiC-particles only. The elastic
moduli as well as the elastic anisotropies in these composites could be
explained using combinations and/or special cases of the theories mentioned

above.
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Texture of Metal-Matrix Composites
by Ultrasonic Velocity Measurements

M. Spies* and K. Salama

Departntent of Mechanical Engineering, University of Houston. Houston, TX 77204, USA

Abstract. An ultrasonic method is developed tor the nondestructive characterization of
texture in metal-matrix composites. In this approach, it is assumed that the presence of
reinforcement particles changes the elastic properties of the composite but only the
texture of the matrix. The method utilizes the measurements of the six independent
ultrasonic velocities V;; and the formulation given by Bunge. The examined composites
are the silicon carbide (SiC)-particle-reinforced aluminum 8091. 7064, and 6061 metal-
matrix composites. The fourth-order expansion coefficients of the orientation distribu-
tion function are determined as a function of the SiC content in these composites. The
results show that the expansion coefficient., change with the presence of SiC where the
coefficients Ci' and C!* increase as the volume fruction of SiC is increased and the
coefficient C4* is zero in all composites examined. The analvsis of these results indicates
that ultrasonics can provide a promising technique for the texture characterization of
metal-matrix composites. .

Introduction

Texture is the orientation distribution of the single crystals in the polycrystal-
line aggregate. A textured polycrystal is elastically anisotropic becausc the
elastic propertics of a single crystal are directionally dependent. Because of the
texture, the single crystal anisotropies do not vanish when averaged. thus the
polvcrystal looses its quasi-isotropy. Most structural materials are polycrystal-
line aggregates and their exposure to plastic deformation and heat treatment
during manufacturing leads to the alignment of single crystals relative to the
forming geometry. This development of preferred orientation is the main rea-
son for the anisotropic behavior in these materials. The texture is characterized
by the fourth-order cxpansion cocfficients of the orientation distribution func-
tion (ODF). These three coefficients allow a satisfactory evaluation of the
clastic as well as the plastic behavior of polyerystalline aggregates, as has been

* Permanen: addresy: Institut fir zerstorungstreie Prufvertahren, Saarbrucken, FRG.
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shown by several studies (e.g.. | [-5]). This situation. however. is more compli-
cated in the case of two-phase or multiphase materials. where the propertics.
the shape. the volume fraction. and the orientation of each phase influence the
macroscopic behavior.

In metal-matrix composites a ductile metal and a high strength reinforce-
ment arc combined to provide a composite of high strength and toughness.
Since many of these properties are characteristic of the bulk. ultrasonics have
been shown to provide promising nondestructive methods for the characteriza-
tion of metal-matrix composites [6].

In this studyv. an ultrasonic method is developed for the nondestructive
characterization of texture in metal-matrix composites. Mcasurements of ultra-
sonic velocities are used to determine the texture in the silicon carbide (SiC)-
reinforced 8091. 7064, and #061 aluminum composites.

Quantitative Texture Analysis Usiiig Ultrasonics
Orientation Distribe ion Function

Texture is mathematically described by the ODF. This function determines the
probability of finding a single crystal in the polycrystalline sample with a certain
oricntation with respect 10 the sample orientations. given by the axes of the
sample fixed coordinate system. According to Bunge [7]. the ODF can be
written as a series expansion into symmetrical generalized spherical harmonics
as
oA A .
flor= Y X X CrTie (1)

nd  hd o
[ U TR I T |

where g is the orientation, the 7Y are symmetrical generalized spherical har-
monics and the C{* are the expansion coefficicnts. The upper limits M(1) and
N(1) depend on 1 as well as the crystal and sample symmetry, respectively. The
orthonormal function system T%" is invariant towards all rotations of the sample
symmetry (indicated by the right dot) and the crystal symmetry (indicated by
the left two dots). In first approximation only the three fourth-order expansion
ceefficients C}', C{* and C}® need to be considered for texture evaluation in
cubic materials with orthorhombic sample symmetry [1, 8]. These three coeffi-
cients can be used to characterize both the elastic and the plastic behavior of
these materials. The fourth-order coefficients in the Roe-notation [9] arc called
Wi Waz. and Wy and are related to Bunge's coefficients by the following
expression:

! 7
Wi a2 V6 c
kA
Wi = S V13 ¥ N
. A
wuu - 7471’5 VTE (.Is‘
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Ultrasonic Velocity Relationships

[nserting the elastic constants of the textured polycrystal. given by Bunge [!]
for cubic crystal structure. into Christoffel’s equation for the orthorhombic .
sample. the following relationships between the velocities of ultrasonic waves
V; and the expansior. coefficients Cy¥ result as

2 2 l z(-n = R «n)
[)"”—'l'”'—(' § '.’T) \3 C "‘3\’5(4 "L:‘\“<(4
Vi = ¢ N _((nfz\,;(nhl\;‘—;(‘u)
Prao=n =g m g \ 315 73 03 3
.2 2 1 78
p¥’§;=('||—('(§—-7—(i\E§CF) (K}
2 I B | == 2
pViz = cu T |3+ 35 \gtgd'-g\.‘.ﬁ(}”)lzp":l
Vi ey e l——}— ?(—(”——2\3\'('-)]—- V3
Py 4! 3 7()\3 3 44 3 R O} i A
. AT 2 <
pVi =y + ¢ T 7 \3(3 - -}-\’5 (l‘)J = pVti

where p is the density and ¢y, ¢|>. and ¢y are the clastic constants of the cubic
single crystal and ¢ = ¢, — ¢;» = 2cy. In these relationships the velocity is
characterized by two subscripts. The first indicates the propagation direction.
while the second indicates the polarization directiog of the wave. 1. 2. and 3
designate the axes in a right-handed coordinate system as shown in Fig. I.

The Lamé constants A and u for the untextured polvervstal (C' = CF =
C¥ = 0) can be expressed as

AitD
~
.
>
I
~
I
+
FaE
~

1
W=l ot 2p =0 -

For the isotropic case (¢ = 0), the shear wave velocity Vy as well as the
longitudinal wave velocity V, will be the same in all directions. and

} R
t ARY!
3 »
f ¥ 28}
1
. 1
v . -V 39
12 > : v
v t : — 23
13 - > YV
vV v ! / -1 : o
T LR M- Flg. 1. Velocity designations for
""" free ultrasonic waves,
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Table 1. Chemical composition of aluminium wloys and volume percentage of
SiC reinforcement of the MMC-specimens

Alloying Elements

Alloy Si Fe Cu Mg Zr Li Zn Cr Co z\i

8091 0.02  0.01 1.90  0.80 0.1l 2.70 — — — rem
7064 0.05  0.10 200 230 0.20 —_ 7.0 012 022 rem
6061 0.71 029 0.21 0.86 —_ — 010 0.06 — rem
Specimens
RO + 0°¢ SiC 809l - 107 SiC 8091~ 1877 SIC
Wed + 00 Sic 7064 <+ 157 SiC 7064 + 2007 SiC
6061 + 154 SiC 6061 + 2008 SiC
p\'f = ¢ = A+ 2.

-~

pVi = ¢y = u.

A turther usetiul expression which can be obtained from Egs. (3) is

-

;)(":‘u - ‘;: - ‘.-;_\) =0 ™~ 2('44. (4}

Experiment

The metal-matrix composites examined in this investigation are the aluminium
alloys Al-8091. Al-7064. and Al-6061 containing up to 209 volume fraction of
SiC particles. The chemical compositions of these alloys and the volume per-
centages of the SiC reinforcement are shown in Table 1. The Al-809i and Al-
7064 composites were received as extruded rods of 25 mm in diameter. while
the Al-6061 composites were received as extruded bars of 16 mm in thickness
and 50 mm in width. Prismatic specimens 15 to 18 mm wide and 30 mm long
were machined such that the length direction was parallel to the extrusion
direction. Opposite faces were machined flat and parallel 1o within £0.025 mm.
All these specimens were examined in the as-received <ordition.

In order to determine the ODF-expansion coefficienis. ultrasonic velocity
measurements are performed using the pulse-ccho-oveniap method. which is
described in detail by Papadakis [10]). The svstem used in this investigation
consists of an ultrasound apparatus which genz.ates pulses of approximately |
ws duration and of variable repetition rate. These pulses are impressed on a
commercial transducer of a fundamental frequency of S MHz which is acousti-
cally bonded to the specimen. The reflected echoes. rf. are received by the
same transducer. amplified. and displaved on a screen of an oscilloscope. Two
of the displayed cchoes are then chosen and exactly overlapped by critically
adjusting the frequency of a C. W, oscillator and the division factor on a decade
divider. The frequency. /. accurately determined by an clectronic counter is
emploved to compute the uftrasonic velocity using the relationship Vo= sf.
where s is the path ength of the ultrasonie wave. The svstem is capable of



Ultrasonic Velocity Measurements 103

measuring changes in the ultrasonic velocity to an accuracy of better than |
part in 10°, while the inaccuracy of measuring both the longitudinal and the
shear velocities is estimated to be 0.3%.

Results
Reduction of Data

The conversion of the measured velociwy data to the texture expansion coeffi-
cients is very critical. Equations (3). which relate the velocities V; of shear and
longitudinal waves with different polarization and propagation directions to the
fourth-order expansion coetficients. provide a variety of relationships to deter-
mine these coefficients. These relationships are shown in Table 2. In order to
select-the relationships from which the coefficients are to be determined. the
propagation of errors involved in the procedure of reducing the measured data
to the physically significant quantities becomes very important.

From Table 2 one can see that there are three relationships which deter-
mine C}' and four equations to determine each of C{ and C}*. The usual proce-
dure to determine these coefficients from the relationships shown in Table 2 is
to use the least-squares analysis. However, in order to keep the number of
velocities to be measured low and to reduce the effect of propagation of errors.
the following procedure is employed:

I. We select relationships which do not require the absolute values of veloci-
ties and only require the differences in these velocities. Thus errors in the

Table 2. Different relationships tor the determination of the ‘ex'pzmsion coefficients C¥

= ApVii - (A + ) e
Cl = A\2u - pVi + Vi) (b)
Ci' = AlptViy + Vi + 2Vi) = 20 + 2p) (<
CE = Ap(V - Vi) ()
CF¥ = AptVi = Vi) ()
Ci = AdA + dp — ptViy + 2Viy) ()
C¥ = A2 + dp) — p(Vi) + Vi + 2V + 2Vi) @

= Ajlep — A+ p(Vi — 8V th)
CF = Asl10p = p(V3, + Vi + 8V - W
CH = Ap(@Vi + 4V - 3VY) = S + 2u)) 8}
CP = ApdVi + 4V + 3V + 3V = 24\ + 1) (k)

210 f3 2 |
where A, = 3 VI A= Vi Ay = NG A
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velocity calculations, which are due to measurements of the path length, are

cancelled out.

We use relationships which involve the lowest number of velocities.

We select relationships which require only ratios of elastic constants. If this

is not possible (as in the cases of C}! and C}') the equations which require the

fowest number of clastic constants are used.

4. We use the set of relationships which requires the lowest number of mea-
surements necessary to determine the cocefficient.

‘vl 1D

The relationships which best satisfy the above procedure are:

go_20 3 SR
Gl=m v 72 - e = Vil =
o210 3, :
Cr = a5 \7 ptVi ~ Vi), (6)
4o 21003 2 :
G = s V7o = A= plVa = 8Vl 7

Replacing the density p by the expression in Eq. (4) vields

0 3 5+ Vi
= — ‘—[2 - ()~ 204y —4/———= ] (&)
4 s¢ \7 H® 1 H Vi + Via + Vs
.20 3 Vi - Vi
Cl = = VS (e = 20) — e ' 9
s NT ! B - viho- v
20 =§[ Vi, - 8V,
13 3 12
= — sl = A+ ey~ 20y — - - ‘ (m
TR\ 38 VT " B e v = vy

It must be noted that Eq. (A) of Table 2 also satisfies options 1-4 histed above.
Replacing the density p by the expression in Eq. (4). the resulting expression
for C}' leads to the same values obtained from Eq. (8).

Equations (8-10) are valid only for materials with cubic crystal structure.
and in order to apply these equations to the composites examined in this work.
the following assumptions are made: 1) The presence of the SiC-particles
changes the elastic properties of the composite but only the texture of the
matrix: 2) The SiC-particles are randomly distributed in the specimen without
any preferred orientation: 3) The ultrasonic wavelength (frequency used is §
MHz) is much larger than the average particle dimension (2-4 um) so that no
dispersion effects occur.

Determination of the Expansion Coefficients CY

The geometry of the specimens used in this investigation allows the measure-
ments of all nine ultrasonic wave velocities V(3 different waves in 3 orthogo-
nal directions). In these measurements the 3-direction is taken to be parallel to
the extrusion direction of the samples (see Fig. 1). The velocities measured are
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‘Table 3. Ultrasonic velocities of the ALROYL, AL7064, and AlL-6061 MMC

specimens!

SO091 S391 SO 7068 7064 7064 606 | 6061

0 - 1); A (X} =Sy < 2007 e |80 2007

SiC SiC SiC SiC SicC SiC Sic SicC
Vi 6612 6Y22 7050 6238 6731 6911 6817 7165
[N Ho06 6913 7011 6233 6734 6937 6780 7103
Vi 6564 7043 7168 0194 (Y20 7108 086Y 7207
Vs 484 3708 N6 3059 3438 3384 343 3695
v, 477 3702 808 066 3440 3567 REY B 701
[ 467 37 N 3082 479 641 3438 RYK) |
Vi, 3480 3736 INg2 RAY) RELYY) 3636 442 3733
Vs 3472 3733 RESH} 51 3370 3617 46 3740
Vi 3482 3736 3844 3062 3469 3640 3435 3774

EVeloeites arve shown in units of /s,

listed in Table 3 and are found to be reproducible to within 0.3%. Becausc of
the rotational axis. the corresponding velocities V), and Vi, Vs and Vo Vy
and Vi, and Vs and Vi are averaged according to the rotational symmetry
around the extrusion axis.

The ultrasonic velocities in the textured Al-matrix (which has a face-cen-
tered cubic crystal structure) are then computed using the equal stress condi-
tion and the velocities measured. This condition assumes that the Al-crystal-
lites and the SiC-particles are subjected to the same stress. With v denoting the
volume percentage of SiC. the equal stress condition can be written as

My Mg -

Meomp = '
I mp .\-‘\/I!\I + (1 — xWMge (n

where M ump. M. and My;c are the elastic moduli of the composite. the matrix
and the reinforcement. respectively. Using Eq. (11) and the well-known rela-
tionships between elastic moduli and ultrasonic velocities, the velocities 1 in
the Al-matrix can be expressed as

; . compy? 212

L (1= )pmmp( Vfl ’) l’.\ii('L hill ( ()
compy2 ’ -
[

" Al - :
Pa PgicVisic = XPeampl Vi

"y

In the calculations of VA the density of the composite is determined according
to the law of mixture

Peomp = (1 = X)pa + Xpsic. (R)

Only small deviations of the densities calculated using Eq. (13) and of the
measured densitics are found for the specimens examined in this work [ 11]. The
densities used in the calculations are 2524 kg/m* for Al-8091, 2864 kg/m* for Al-
7064, 2710 kg/m* for Al-6061 [12], and 3200 kg/m* for SiC [13]. The shear and
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Table 4. Expuansion coefficients ¢} of the ALLR091. Al-7064 and Al-6061 MMC

specimens!
8091 R0Y| R091 7064 7064 7064 6061 6061
+(7/ + W, + 5% +(y +15% + 2077 +157% + 2007
SiC SiCC SiC SiC SiC SiC SiC SiC
¢y 2.208 1.573 3532 2358 RI AN 5382 3.293 7.404
v 0 0 0 0 0 0 0 0

CYo2094 0 0431 1.034 1.962  1.267 2175 1.913 4.6306

b 3-direction {f extruston direction.

the longitudinal wave velocities V¢ and V) for SiC are obtained tfrom the rela-
tionships V3= wip. Vi= (A 4+ 2udpand v o= M2\ + w)l. where ¢ s the
Poisson’s ratio = 0.19 and u = 165.5 GPa [13).

The single crystal values used in Egs. (8)=(10) are:

S2.5GPa, ¢y = 32.53GPu. ¢ = —6.4 GPa for AI-8091 [14].

1t
fi

= 111.1 GPa, ¢|»
= 107.3 GPa. ¢;» = 60.3 GPa. ¢y = 28.0 GPit, ¢ = —9.0 GPa for Al-7064 [15].

! i

It
I

(1= 1080 GPu. cpx = 620 GPa. g = 283 GPi. ¢ = = 10.6 GPa for Al-6061 [16].
The expansion coefticients €} are then determined using Egs. (8-10). and their
results are shown in Table 4. Because of the rotational symmetry of the sam-
ples. the coefficient Ci” is found to be zero for all specimens.

Discussion

The expansion coefficients C!' and C{' are plotted versus the volume percent-
age of SiC in Fig. 2. From the figure one can sce that there is first a slight
decrease in these cocefficients followed by a linear increase up to 20 volume
percent of SiC. These plots also show that the presence of SiC leads to consid-
crable changes in these expansion coefficients and thus in the texture of the Al-
matrix.

The determination of C!'is known to be critical because it requires absolute
velocity measurements. Therefore it must be established whether the deter-
mined values for C!' are reasonable. This can be done by considering the two
extreme cases of a (111)-fiber texture and a (100)-fiber texture. which are usu-
ally observed in extruded aluminium {17]. Because of their rotational symme-
try. fiber textures are sufficiently deseribed by one expansion coefficient.
namely. C}'. whercas C4° and C§ are zero [ 18], In the case of an ideal (111)-fiber
texture. where the crystallographic directions with the highest ultrasonic veloc-
ity lic along the extrusion direction. the value of Ci! is found to be equal to
—4.575. On the other hand. for ani dea! (100)-fiber texture. where the crystallo-
graphic direction with the lowest ultrasonic velocity lies along the extrusion
direction. the valuc of C{'is +6.887. These values. which arc obtained from the
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results of pure aluminium, agree very well with C}! = —=4.570 and C}' = +6.770
given by Bunge [18]. These two “extreme™ values constitute the upper and the
lower bounds for C}' of any texture in extruded aluminium.

The values obtained in this work (Table 4) lic within these bounds. except
for the Al-6061 + 209% SiC composite. This agrees with the results reported in
reference [11] which show that the elastic behavior of all Al-SiC composites
examined in this work can be approximately described by the equal stress
condition represented by Eq. (I11). with the exception of the Al-6061 + 205 SiC
composite which shows a large deviation from that condition. The velocities V.
in the Ai-matrix were also determined using the equal strain condition

;\Imm,, =1 = My~ Mg

which assumes that the Al-crystallites and the SiC-particles undergo the same
strain. The coefficients resulting from these calculations are found to lie far
outside the bounds given above. which again agrees with the results in refer-
ence [[1].

The departure of the elastic behavior of the Al-6061 + 209 SiC composite
from the equal stress condition may be due to some degree of hydrostatic stress
generated within the MMC specimen. In this case. the matrix material in the
composite tends to deform at a lower stress than the reintorcement because the
matrix material is softer than the reinforcing material. If the matrix material is
rigidly coupled with the rcinforcement, it is restricted from deforming in the
way it would if it were alone and causes hydrostatic stresses to be generated
within the matrix material, The cxact magnitude of this effect is unknown and
rather complex. but it is a function of the mean free path in the matrix and the
ratio of the clastic constants of the constituents | 19]. In general the mean tree
path in the matrix varies from region to region. and therefore no simple ratio
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can be predicted. Thus the extent of deviation of the elastic moduli form the
cqual stress condition can vary from specimen to specimen.

Since the mean frec path in the matrix decreases with incrcasing volume
percentage of the reinforcing phasc. the limitation of the approach presented in
this work to composites with ““small™" fractions of rcinforcements is apparent.
Nevertheless. in these cases reasonable results arc obtained up to a volume
fraction of 20%¢. From Table 4 and Fig. 2 onc can scc that the coefficients
determined lie within the bounds given above and that the cocfficients of these
specimens. which contain the same volume percentage of SiC lic close to-
gether. indicating that these specimens contain similar textures. Figure 2 also
indicates that the textures. which arc only duc to the extrusion process (007
SiC). are modified by the addition of the SiC-reinforcements in a similar way. If
it is assumed that the examined specimens contain a mixture of a (111)- and a
(100)-fiber texture. which is usually observed in extruded aluminium {17]. the
increase in the expansion coefficient C}! with increasing volume percentage of
SiC indicates that the (100)-directions of the Al-crystallites align more and more
towards the extrusion direction as the SiC-concentration is increased.

From above. it can be seen that ultrasonic velocity measurcments can be
used for the nondestructive characterization of texture in metal-matrix com-
posites. The results also indicate that the assumptions made concerning the
effects of mntorumum particles on the texture in these materials are reason-

able.
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Concluding remarks

A model has been presented for predicting the response
from multilayered piezoclectric structures which demon-

Five port lattice model. G. Hayward and D. Gillies

strate two. loosely coupled, compressional modes of
vibration. Good agreement between theoretical and
experimental results was achieved over a range of structural
configuration ratios. Provided that the underlying physical
assumptions are appreciated, the model is useful for
providing a first order approximation to electrical
mechanical and piezoelectric interaction in ultrasenic
array structures. For example, the model will provide a
good approximation for thickness mode behaviour within
individual elements in a diced array. The influence of
bond lines, mechanical matching layers and electrical
loading on transducer response may be investigated in
both time and frequency domains. In addition, lateral
mode propagation may be studied in conjunction with
factors such as element periodicity, inter-element loading
and electrical cross coupling. This approach is also
suitable for modelling of pure thickness mode structures
which are subject to independent electrical loading by
setting the appropriate mechanical and piezoelectric cross
coupling constants to zero. An extension of the method
for the simulation of stacked piezoelectric structures
which possess common or parallel electrical loading has
also been developed and will be reported at a later date.
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Relationship between elastic anisotropy and
texture in metal-matrix composites
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The relationship between elastic anisotropy and texture in two-phase metal matrix composites
has been developed under certain conditions. Using measurements of the six independent
ultrasonic velocities V, in samples of the aluminium alloys 8091 and 7064 containing up to
20% SIC particles and the formulation given by Bunge, the fourth-order expansion
coefficients of the orientation distribution function are determined. The Young's moduli in
different directions are also obtained from ultrasonic velocity measurements. Linear correlations
between anisotropy described by Young's moduli and texture determined by orientation
distribution function expansion coefficients are obtained, and confirm developed relationships
for two-phase metal matrix coinposites. This result shows that ultrasonic measurements
provide a technique for the characterization of texture and elastic anisotropy in these

materials.

Keywords: metal-matrix composites; elastic anisotropy; texture

Introduction

Most structural materials are polverystalline aggregates
and therr exposure to plastic deformation and  heat

treatment during manufeturing leads to the alignment of

the single ervstals relative o the forming geometry. This
development of preferred orientation or texture is the
Muin reasoit for the anisotropie behaviour of these
materials, Fhe texture s mathematically desceribed by the
orientation distribution function tODFEF). which determines
the probabihty of finding a single crvstal in the aggregate
with o cortan orentation with respect to the sample
ceometry. The clastic behaviour  of  polverystalline
matenabs v determimed by the  three  fourth-order
avpansion cocthicients of the ODE. The situation. however,
v more complicated e the case of two-phase materials,
where the macroscopic properties we strongly inttuenced
by the properties. the shape. the volume traction and the
arentation of cach phase

In a recent study an ultrasonic method has been
developad for the nondestructive determimation of texture
mometal matriy composttes. Measurcments of ultrasonic
vetocibies have been used to determince the three fourth-
arder ODE-cvpansion coctlivients i 8SO9 1 7064 and 6061
alunmimum matoy composites. The examimed composites
dre reamntorced wath up o 2075 shicon carbide 1510
particles of about 2 4 zonn diameter and of approsmately
spherical shuape Under the assumptions of homogencous
distrrhution of the S1C particles and that the Alersstalhites
avd the S1C partcles are subjecied to the same stress the
cvpansion coctherents olHovrii-order have been determimed

T Rarmarant address Fraunhofer Institut tar zerstorangsfres Prgt
codtahien Saabrucken FRG

0041 624X 90 060370 05
¢ 1990 Butterworth-Heinemann Ltd

as afunction of the volume percentage ol SiC-reinforcement.
and found to lic within given bouncs,

In this study the fourth-order expansion cocllicients
obtuined by this technigue are used to examine relationships
between texture and Young's modulus in the SiC o reinforeed
091 and 7064 aluminium composites. Measurements of
ultrasonic velocities are used to determine the Young's
maodulus in different directions of the composites.

Ultrasonic texture analysis

Orientation distribution function

Texture is deseribed by the (ODF)L which determines
the probability of finding a single cryvstal i the poly-
crystalline sample with a certain oricntation with respect
to the sample orientations. as shown in Figrre 1. According
to Bunge® the ODE can be written as a series expansion
into symmetrical generalized spherical harmonies as

-

’ v Naibh -
figr= 1 ST (h

i tou 1 i

[

where ¢ is the orientation. the 7% are svimmetrical
generalized sphencal harmonies and the O wre the
cexpanston coctlicients. The upper imits Midy and N/
depend on L as well as the ervstal and sample symmetry,

respectively. The orthonormal function system T4 s
i erant towards all rotations of the sample ssymmetry
ndicated by the night dot) and the ervstal symmetrny
cdicated by the left two dois In st approvmation
only the three tourth-order evpansion coctheients ()
CLand CLaeed to be considered for texture evaluation
i cubie materials with orthorhombic sample ssmmeiny '
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The moditied retationships which allow the determina-
ton of the fourth-order expansion coellicients €3 for the
SIC particle-remtoreed  aluminium  matrix: composites
are deseribed indetaill inreference 1. Withe = ¢y, - ¢)»
2eggowhere oo and oy are the elastic constants of the
alumimum single crystals, the expansion coellicients €'

are related to the ultrisonic velocities 3™ as fonows

o 2003 N I+ s
2 vy w20 o, M
4 XA \ 7 Al 11 44 l’ix* ! }‘: ' l'\\
(2}
2003 (S N
Gy < B T H~~ \__“ R
MR b -
i 210 3 p
L N i ’
' N\ 13, \7 Al Al
(TR B
S T U B P 4
;I t+ .i:‘f’l];
where
- | NPoomn \ N
L jon 23 (5)
chmm M,
~ . 1 W oomn A
(b, ( . i“m‘) (6)
(- M,
and
|3 P TN ST SN T joeb203 (73

(i the density and Mois the clastic modulus)

In these cquations v designates the volume fraction of
SIC g7 g0 g, and o are the Lame constants for Al
dand SO0 respectivels. Also in the caleulation of the
coctlicients €' the density of the composite can be
determined aecording o the faw of minture p
(' AR FIEVERR VNI

I'he above equations are derived under the iollowing
assumptions. $he presence of the SiCoparticles changes
hoth the clastic properties of the composite and the
texture of the matriy, The i€ particles are randomly
distributed in the specimen without any - preferred
orrentation. The ultrasome wavelength is much farger
than the averaee partcle dimension 2 4 qmt so that no
Jispersion edects may oceur.

wvomp 7

Relationship between texture and Young's modulus
The divectton dependence of Young's modulus £ n
muterials with cubie erystal structure contiimimg textures
with orthorhombie ssmmetrs can be deseribed by

where (is the angle to the deformation direction (rolling
orextrusion) coinading with the I-direction of the sumple
fixed coordinuate system (Figure 1), The quantities ¢, ¢,
and ¢y in equation (X) are constants determined from
cquation (10).

According to Bunge®
eapressed us

cquation (8) can also bhe

Etoy=E, + E,CL' + E,CL7 cos 204+ E,CL cos W0
{9)

where E,is the Voigt average of Young's modulus for
rundom orientation distribution and E,. £, and E, are
combinations of the elastic constants of the single crystals.
Equation (X1 will then provide the expressions

=1 3[EO )+ 2FE045 )+ K90 )j=E i 10a)
eo=1 2[ K0 )= EM0 )] =F, (10b)
ev=1 4[E0 - 2F(45 )+ (90 )] =1 2AE (10¢)

m

and from equation (9) we can obtain

I"‘m = I-‘-l(ﬂll + I.‘r ( ! ]il’
Ey=E,CL" (11b)
AE=E L (1)
Experimental

The metal matnix composites examined in this investiga-
tion are the aluminium aliovs 8091 and 7064 containing
up to 20 volume fraction of silicon carbide particles.
The chemical compositions of these allovs and the volume
pereentages of the SiC o remnforcement are shown in
Tuble 1. The composites were received as extruded rods
of 253 mm in dizmeter. Prismatic specimens 15 to 18 mm
wide and 30 mm long were machined out of these rods
such that the length direcuion s paraliel 1o the extruston
direction. Opposite faces are machined flat and parallel
to within = 0.025 mm on these specimens.

In order to determine the OBE expansion coetlictents.
ultrasome velocity measurements are performed using the
pulse-ccho-overlup method. which 15 deseribed in detail
by Papadakis'”. The system used in this investigation
consints of an ultrasound apparatus which gencrates
pulses of approamately 1 ps duration of 4 vanable
repetition rate. These pulses are impressed on a commercial
transducer of a fundamentat frequency of S MH/z which
s avoustically bonded 1o the specimen. The reflected rf.
cchoes are received by the same transducer. amplinied
and displaved on a sereen of an oscilloscope. Two of the
displayed echoes are then chosen and exactly overlapped
by critically adjusting the frequency of a CW osatlator

Favir o e o 2 e cos (N} and the division factor on a decade divider. The frequency.
Table T vooec b rposton of dhanungn altove and yolume pereentage of SIC remforcement of the MMC specimens
; e e -
i Alloving Flements
ATty = b Cu Ma 1 Zn Cr Co 4
AR R HNEH 190 030 270 rem
NETE Vi BRI RRIE 2an (520 710 12 022 rem
SO e o
ST A 2091 S 8091 - 15 . SC
Tl S T SC TO64 . 200 SiC
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f. accurately determined by an clectronic counter is
employed to compute the ultrasonic velocity using the
relationship 1= sf. where s is the path length of the
ultrasonic wave. The system is capable of measuring
chunges in the ultrasonic velocity to an accuracy of better
than one part in 10°, while the tnaccuracy of measuring
both the longitudinal and the shear velocities s estimated
to be 030,

Results and discussion

The geometry of the specimens used in this investigation
allow . the measurements of all nine ultrasonic wave
velocaiies 1™ three different waves in three orthogonal
directions). The velocities measured are histed in Tuble 2.
In these measurements the 3-direction is taken to be
parallel to the extrusion direction of the sample (see
Figwre 1), The relationship between texture and Young's
muodulus. deseribed by equation (111 is valid for a cubie
crystal structure containing textures with orthorhombic
svmmetry. such as those generated by rolling. In this
arrangement ¢ s the angle to the rolling direction. which
15 taken to be parallel to the I-direction.

Because the extruded samples under examination also
exhibit textures with orthorhombic symmetry™ | equation
{11y can be applied if the extrusion direction is parallel
to the I-direction. Rearranging the sample-fixed coordinate
systemoan this way leads to a renaming of the composite-
veloaities 1500 (Table 2y by changing the subscripts i
and ysuch that 12,253 31,

The veloaties which should be equal because of the
rotational symmetry around the extrusion axis are then
averaged to provide the velocities (V$PP), 0 (F570),,.
(rsm, and (Fsary o The expansion coefficients CV
are caleulated using these veloetties and equations (2} (4).
Therr values are plotted versus the volume percentage of
SIC i Fgwres 20 2 and 40 In these caleulations the
following Al-single crystal constants are used®: ¢, = 1111
GPa. ¢, =525 GPa. ¢y = 32.5 GPa for Al-8091 [8]:
i 1073 GPa ¢ =603 GPal oy, = 280 GPa for
AL-7064. The density values used are' 2524 kgm - for
ALRO9T and 2864 kg m - for Al-7064.

The Young's moduli in the 0 045 and 90 -directions
are determined using the relationship

U + 2 0))
A0+ i)

Lo (12

Figure 1
system K for characterization of orientation

Sample fixed coordinate system P and crystal fixed

10
3 o ® A
oF
T 4r
Q
2t
®
(U d @ 38091
A 7064
~2 1 A A - 1
0 S 10 15 20 25

Volume Percentage of SiC

Figure 2 Expansion coefficients C,’;’ of the MMC specimens
plotted versus volume percentage of SiC (1-direction parallel to
extrusion direction)

for the angles 0=0, 45 .90 . E(0 ) and E(90 ) arc
computed using the velocity data shown in Tuble 2. The
shear velocities at 45 to the extrusion direction have
also been measured and their values are used to determine
E(45 ). The values of E(0 ). E(45 ) and E(90 ) as well
as those of E. E, and AFE for the Al-8091 and Al-7064
composites are included in Table 3. The plots of E, versus
Ci'E, versus CL2 and AE versus C}* are also shown
in Figures 5 to 7 and indicate linear correlations as given
by equation (11). The regression equations for thesec
relationships can then be written as

Al-R091

where the Lame constants 2000 and p00) are determined E,=12238 C{V+ 7817y GPa r=0992
by Ey= (0451 CF 0000 GPa o r=1
ity - phsTi A0V 20y - pl3 (13) AE =(0.143 C}Y 0115 GPa r=0998
Tabte 2 Ultrasonic velocities of the Al 8091 and Al- 7064 MMC -specimens Velocities are shown in units of m s !
8091 8091 8091 7064 7064 7064 6061 6061
- 0 - 10" - 157 + 0% - 15% - 20% «15% - 20%
Sic SiC SiC SiC SiC SiIC SiC SiC
Vi, H612 6922 7050 238 6731 6911 6817 7165
Vo 6606 6913 7011 6232 6734 6937 6780 7103
V. 6564 7043 7168 6194 6920 7108 6869 7207
Vi 3484 3708 3816 3059 3435 3584 3413 3695
V., 3477 3702 3805 3066 3440 3567 3418 3701
Vo 3467 3728 3824 3082 3479 3641 3438 3731
Vo, 3480 3736 3842 3067 3469 3636 3442 3733
Vi 3472 3733 3848 3051 3470 3617 3446 3740
L V., 3482 3736 3844 3062 3469 3640 3435 3774
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Figure 3 ExpdnsnoncoefhcaentCl"oftheMMCspemmensplotted Figure 5 Elastic parameter £, plotted versus the expansion
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Figure 4 Expansion coethicients CL( of the MMC specimens Figure 6 Elastic anisotropy parameter £, plotted versus the
plotted versus volume percentage of SIC (1-direction parallel to expansion coefficient C}? for the Al-8091 and Al-7064 MMC
extrusion direction) specimens
\-T06d examined. Itis important to note that in these relationships
1y, reeffieiantc : -
L 302U 6505) Gl r 0998 €y are the texture cgeﬁlclenl{delermmed for the Al
‘ matrix. whereas E_. E, and AE characterize the clastic
Ly 077200 002 GPa r==0.999 anisotropy of the whole composite. From this it can be
: < . sonclude ¢ > clastic anisotropy of the composites
\E0062 CLY 0030 GPa = 0943 concluded that the clastic anisotropy of the composil
is influenced only by the texture of the Al matrix. which
The Tact that the regression hines for Fand AE do not is in tun influenced by the extrusion process and the
cross the ordimate at the origm s due to measuring errors. presence of the SiC particles. Also from the lincar
Nevertheless, the high correlation coetlicients confirm the correlation of K with C}7. shown in Figure 6. it is seen,
vithdity of the relationships between texture and Young's that £ . which represents the difference of the Young's
modulus (equations (1) for the Al SiC composites modulus in the extrusion direction and the Young's

Table 3 Young ~ modul £00 v £045 1 and £190 ) and the resulting parameters £, £, and A for the Al 8091 and Al 7064 MMC
specomens The values are showo o gnits of GPa

8091 3091 80OM 7064 7064 7064

S0 - 10 - 18Y, - 0% < 15% - 20%

SC S C SiC SiC SiC SiC
A 98 911 959 721 911 991
[T 99 ann a4 3 719 300 972
£ 200 900 34 7 720 896 96 5
s a9 a0y 3 ad 8 720 an 2 975
' nan 065 060 005 075 130
\f ! 0 55 100 015 035 060
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Figure 7 Elastic anisotropy  parameter \£ plotted versus the
expansion coethoent C, for the Al 8091 and Al 7064 MMC
specimens

modulus perpendicular to that direction, is equal to zero
when €35 goes o zeros Sinee the addition of SiC
retnforcement modifies textures during the extrusion
process 10, S1C) . the texture of the composite can be
changed by moditving manutacturing parameters such as
extrusion velodits and temperature ™. This will then provide
a means to control the anisotrops of the composite, and
tts mechanical properties.
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ELASTIC AHISOTROPY IN PARTICLE/FIBER REINFORCED

ALUMINUY METAL MATRIX COMPOSITES

B.Grelsson and K.Salama

Department of Mechanlcal Englneering
University of Houston
llouston, TX 77204

INTRODUCTION

Metal matrix composites hold high promises as engineering
materials, In order to take full advantage of thelr promising
properties, the complex nature of the composites must be understood.
Some questions thus arlsing; how do different manufacturing processes
influence the microstructure and how can the mechanical properties of
the composites be explained and predicted from knowledge of thelr
microstructure.

The elastic properties of a composite material depend on many
parameters: volume fractlon, geometrical shape, size distribution,
orfentation and distribution of the reilnforcement and the properties of
the matrix. Mathematical models have been developed for some speciflc
shapes and distributions of the relnforcement. Christensen {1} derived
the effective shear and bulk modull for a dilute suspension of elastic
spherical particles in a continuous phase of another elastic material.
Ledbetter et al. (2] used a scattering theory to explain the elastlc
behavior of a particle reinforced composite in which randomly orlented
ellipsoidal particles were nonhomogeneously distributed. Experimental
work by Lee et al., (3] showed that in particle-reinforced composites the
second-order elastic constants increase llnearly with the particle
content., Thelr results suggested that the dominant factor in influencing
the anisotropy iIs the content of reinforcement. Sples & Salama (4]
investigated the influence of the relnforcing phase on the texture and
found that the fourth-order expansion coefflcients change linearly with
the particle content. Thelr results indlicate that the presence of
particles In the composites leads to considerable changes in the texture
of the aluminum matcix. .

The objective of this study ls to obtsln information about what
features in the microstructure of the composites are causing thelir
anisotroplc behavior. Thls was accomplished by comparing the particle
slze distribution in three orthogonal directlions, with the ultrasonlc
velocities measured along the same directions. Three serles of Sic-
particle reinforced composites were examined. Two serles comprised of
extruded samples while the third ~onsisted of pressed specimens. Each
series included samples of different particle content. Also, three
squeeze-cast samples with different particle/fiber content were
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examined. In the extruded composites, the properties along the extrusion
direction were found to be different from those in the directions
perpendicular to the extrusion direction. This behavior is explained in
terms of the presence of texture in the matrix. The squeeze-cast
specimens also showed an anisotropic behavior which is induced by
preferred orientation of the fiber reinforcement.

MEASUREMENTS
SQ“CX. mens

The metal matrix composites (MMC) used in this investigation
comprised of aluminum alloys as the matrix material and either SiC-
particles or alumina fibers and particles as the reinforcement. The
specimens which have Al-6061 as matrix were received as pressed plates,
whereas the composites containing AlL-7064 and Al-8091 were obtained as
extruded rods. The alumina reinforced specimens were all squeeze-cast.
The volume fractions of reinforcement in the composites used are shown
in table 1.

The coordinate systems were chosen such that in pressed samples the
x; and x;-axes are in the plate at right angles to each other and the
x3j-~axis is alon~ che compression direction (normal to the plate). In the
extruded =me imens the x; and xj;~axes are perpendicular to the extrusion
directi... .4 orthogonal to each other. The xj-axis is along the
extru- i~ direction. In the squeeze-cast samples the x; and x;-
diruct .ons are in the fiber rich layers at right angles to each other,
and the xj-direction is perpendicular to the fiber rich layers.

Microstructure

The particle size distribution and the area fraction covered by the
reinforcement in each plane were estimated in each specimen. This was
accomplished by scanning the faces of the specimen under an optical
microscope and taking photographs at several "representative" locations
along the three chosen directions. The particle size distributions were
obtained from these micrographs by counting the particles and estimating
their size., The size of a particle was estimated using its projected
area on the face which, in turn, is equal to the area of a circle having
the diameter d. The particle was considered to belong to the size range

Table 1. Metal-Matrix Composites used in investigations

Manufacturing method % Reinforcement in Composites

Pressed plates Al-6061 + 0% SicC
Al-6061 + 25% SiC
Al-6061 + 40% SicC

Extruded rods Al-7064 + 0% SicC
Al-7064 + 15% SicC
Al-7064 + 20% SicC

Al-8091 + 0% SiC
Al-8091 + 10% SiC
Al-8091 + 15% SicC

Squeeze-cast Al-Si-Cu-Ni-Mg + 20% Alp03 (Mat A)
Al-Si + 20% Al703 (Mat B)
Hiittenaluminum + 20% Al703 (Mat C)
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where the inequalities n < d < ntl are satisfied, where n and n+l are
the lower and upper limits of the size range. Also from the micrographs,
features like orientation, shape and distribution of the reinforcement
were examined.

Ulrrasopnic velocitiea

Measurements of the ultrasonic velocities were performed using the
pulse-echo-overlap method, which is described in detail elsewhere (S}. A
pulse of approximately l-psec duration of variable pulse-repetition rate
is generated and impressed on a transducer which is acoustically bound
to the specimen. The reflected echoes are received by the same
transducer, amplified, and displayed on an oscilloscope. Two of the
displayed echoes are then chosen and exactly overlapped by critically
adjusting the frequency of the cw oscillator. This frequency £ is
employed to compute the ultrasonic velocity using the relation v=21f,
where 1 is the thickness of the specimen. X- and Y-cut transducers of 10
and 2.25 MHz were used for the generation of the longitudinal and
transverse waves respectively.

RESULTS AND DISCUSSION

The particle size distribution and the fiber/particle content,
estimated from optical micrographs, are shown in figures 1-4. Table 2
and 3 contain the area fractions covered by the reinforcement. The data
are accurate to within 10% of the nominal values. Table 4,5 and 6 give
the ultrasonic longitudinal and shear velocities measured. The
velocitles are denocted Vyy, where i and j are the directions of
propagation and polarization respectively. The velocities are found to
be reproducible to within 0.5%.

From figures 1-3 one finds that in the pressed samples, the
particle size distributions as well as the area fractions covered by the
reinforcement are the same in the three directions within the accuracy
of the measurement. On the micrographs the reinforcement showed no
features explaining the differencies in ultrasonic velocities measured.
This suggests that the anisotropy is due to the te “ure in the aluminum
matrix. The similar anisotropic behavior in the specimen without
reinforcement also confirms this statement. However, the presence of
SiC-particles is found to vastly enhance the anisotropy.

Table 2. Area fractions covered by the SiC-particle reinforcement.

Direction 6061+ 6061+ 7064+ 7064+ 8091+ 8091+
25%_S1C  40% sic 15%_Sic  20% SicC 10% SiC  15%_SiC

1 26.3 37.7 20.6 23.9 12.7 17.5

2 22.6 36.3 18.7 23.7 12.1 16.5

3 24.0 31.7 16.5 21.0 11.8 15.3

Table 3. Area fractions covered by the alumina fiber and particle
reinforcement (%).

Direction Material A Material B Material C

——— PacticleFiher Total ParticleFiber Total ParticleFiber Total
1 12.0 11.9 23.9 8.5 12.6 21.1 1.0 13.2 14.2
2 20.4 2.5 22.9 15.2 2.7 17.9 12.5 3.2 15.7
3 18.7 2.9 21.6 15.7 2.0 17.7 13.7 2.7 16.4
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Table 4. Ultrasonic velocities in SiC particle-Al pressed
composites (m/s)

Velocity 6061+ 6061+ 6061+

0% sic 25% sic 40% sic
Vi1 6407 7224 8058
Va2 . 6422 7287 8084
Vi3 6358 6979 7841
Vi2 30989 3785 4507
Vis - - -
Vo, 3103 3798 4505
Vis — ———— ———
Vi 3200 3676 4398
V32 3195 3692 1412

Table 5. Ultrasonic velocities in SiC-particle~Al extruded
composites (m/s)

Velocity 7064+ 7064+ 7064+ 8091+ 8091+ 8091+

— 9%y sic  15% SiC 20% SiC 0% Sic 10% Sic 153 SiC
Vi 6251 6728 6935 6617 6890 7002
Viz 6233 6733 6875 6611 6903 7000
Vi3 6250 6902 7071 6626 7025 7141
Vi2 3077 3457 3591 3511 3723 3827
Vi3 3069 3485 3667 3498 3738 3848
v 3075 3448 3593 3507 3719 3818
Va3 3095 3477 3625 3496 37131 3834
Vi 3056 3490 3666 3492 3745 3856
V32 3090 3469 3595 3494 3741 3852

Table 6. Ultrasonic velocities {n alumina particle and fiber-Al
squeeze-cast composites (m/s)

Velocity Composite A Composite B Composite C

Vi1 7032 6967 6670
Va2 7033 6969 6712
V33 6904 6835 6524
V12 3694 3656 3419
Vi3 3669 3578 3336
v 3681 3657 3439
Vs 3683 3594 3345
v 3644 3560 3325

V2 3675 3606 3329

In the two series containing extruded specimens (Al-7064 and Al-
8091) the reinforcement showed the same features in the three directions
{compare fiqures 2 and 3). Nevertheless, in the reinforced samples the
longitudinal velocities are higher in the extrusion direction, whereas
the velocities are the same in the samples without reinforcement. This
behavior further indicates that the anisotropy is caused by texture in
the aluminum matrix but also indicates that the presence of the SiC-
particles enhance the formation of texture.

In the squeeze-cast specimens (composites A,B,C} the ultrasonic

longitudinal velocities, given in table 6, are considerably higher in
the plane of the fibers than in the directions perpendicular to that
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plane and the higher the fiber content the higher the difference in
velocity. No difference in longitudinal velocity was, however, found for
waves propagating in the plane of the fibers having different
polarization directions. Furthermore, the velocities of the shear waves
propagating normal to the plane of the fibers but polarized in different
directions are the same whereas the velocities of the shear waves
propagating in the plane of the fibers are higher when the waves are
polarized in the plane than when the waves are polarxized normal to the
plane. This means that the squeeze-cast specimens show a transversely
isotroplc behavior - hich is in agreement with thelr microstructure.
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Elastic Constants of Particle and Fiber Reinforced
Metal Matrix Composites

B. Grelsson and K. Salama

Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA

Abstract. A modei has been developed to predict the elastic moduli in composites
reinforced with both particles and fibers. In the model the matrix material and the
particles, which are assumed to be homogeneously distributed, form an effective ma-
trix. The characteristics of this effective matrix is calculated using a theory formulated
by Ledbetter and Datta. The effective matrix is then considered to be reinforced with
fibers lying in one plane but randomly oriented in that plane. The effect of the 2-
dimensionally random orientation of the fibers on the elastic modul of the composites is
determined in two steps. First the composite cylinders model by Hashin and Rosen for
an aligned fiber system is employed, and then a geometric averaging procedure sug-
gested by Christensen and Waals is performed. Using this model, the Young’s and shear
moduli were calculated for three samples with differeat alaminum matrices and volume
fractions of particles (9, 13, and 17%) but the same fiber content (6%). The same elastic
moduli were also determined using ultrasonic velocity measurements. The agreement
between calculated and measured elastic moduli is found to be very good. Also, the
elastic anisotropies between directions of the fiber rich plane and that normal to the
plane could be predicted by the model.

Introduction

Many models have been developed to determine the effective elastic moduli of
composite materials [1-7]. Most of these models deal with reinforcements in
the form of spherical particles [1, 2], ellipsoidal inclusions {3, 4] or infinitely
long fibers [S, 6]. However, in industrial applications the composites used are
often of a more complex nature, where a mixture of particles and fibers is
used as a second phase. To our knowledge no models that describe the elastic
properties of these composites are available.

Ledbetter and Datta [1] used a multiple scattering theory to predict the
elastic behavior of composites with a nonhomogeneous particle distribution. In
the model they assume that the particles together with the matrix form an
enriched ‘‘sea’ that surrounds ‘“‘islands’ of pure matrix material. These non-
spherical islands are aligned and produce anisotropy. The elastic constants
predicted by the model are found to agree with those determined by ultrasonic

This article is dedicated to Professor Dr. Paul Holler on the occasion of his 65th birthday.
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velocity measurements. Also, the elastic anisotropies in these composites
could be explained in terms of the nonhomogeneous distribution of the
particles.

On the other hand, in order to determine the effective elastic properties of
fiber reinforced materials, Hashin and Rosen [5] introduced the composite
cylinders model. In this model, the composite is considered to be comprised of
infinitely long circular cylinders embedded in a continuous matrix phase. Each
fiber has a radius, a, which is surrounded by an annulus of matrix material of
radius b, and the ratio a/o is considered to be constant for all composite
cylinders. In order to obtain a volume filling configuration, the absolute size of
the cylinders must vary considerably. Hence, the model is expected to provide
reasonable agreement with experimental measurements only if the size distri-
bution is wide or the fiber concentration is low.

The present study is concerned with composites reinforced with both parti-
cles and fibers. In these composites, the presence of the homogeneously dis-
tributed particles improve the overall mechanical and thermal properties,
whereas the fibers, randomly oriented in one plane, introduce the directionality
often desirable in some applications. Due to the mixing of particles and fibers a
model determining the elastic moduli of the composites is expected to be ex-
tremely extensive and complicated. In the composites investigated, however,
the volume fraction of the reinforcement is relatively low, and hence we as-
sumed no interaction between the fibers and the particles. This assumption
simplified the calculations significantly since the effects of fibers and particles
on the elastic properties could be evaluated independently.

In this approach we first considered the matrix material and the particles to
form an effective matrix. Since the particles are homogeneously distributed in
the metal, the effective matrix is considered to be homogeneous. The effective
matrix was then considered to be reinforced with the fibers which are randomly
oriented in one plane. The influence of the fibers on the elastic moduli of the
composites was then determined first by using the composite cylinders model
for an aligned fiber system (5] and second by performing a geometric average
procedure which takes care of the 2-dimensionally random orientation of the
fibers. A good agreement was obtained between the calculations and the experi-
ment.

Theory
Composite with Spherical Particles

First. we consider a system that consists of an aluminum matrix and alumina
particles. To find the elastic properties of this system, the results obtained by
Ledbetter and Datta [1] are adopted. Using a multiple scattering approach
these authors calculated the effective wave speeds of plane waves in a compos-
ite with randomly distributed particles. In their calculations they made the
assumptions that the wavelength of the ultrasonic waves is long compared to
the dimensions of the particles, all particles have the same shape and size, and
the concentration of particles in the composite is dilute. The expressions for the
effective bulk, Ky, and shear moduli, G4, they obtained are
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where the subscripts m and p refer to matrix and particles respectively, and
C, is the volume fraction of particles. The expressions for T,; and T are given
in [1].

The system consisting of the aluminum matrix and the alumina particles is
now considered as the effective matrix. In order to obtain the elastic properties
of the composites under consideration, the characteristics of a composite com-
prised of the effective matrix and fibers randomly oriented in a plane are
needed. The first step in finding these characteristics is to calculate the proper-
ties of a composite with fibers aligned in one direction.

Composite with Aligned Fibers

The most common model used for this geometry is the composite cylinders
model introduced by Hashin and Rosen [S5]. In this model, the fibers are as-
sumed to be infinitely long circular cylinders embedded in a continuous matrix
phase. With every fiber of radius, a, there is anaannulus of matrix material of
radius, b, associated with it. The ratio of these radii a/b is considered to be
constant for all composite cylinders but the absolute values of the radii @ and b
vary such that a volume filling configuration is obtained. The effective Young's
modulus E},. the Poisson’s ratio v,,. the plane strain bulk modulus K-; and the
shear moduli G,, and G3; of the composite can then be expressed as

E,

= C/E; + (1 = CPE, + 4CA1 — C)G (v = v’
e fr=m 4 P 0 =C) G _GGn

K+ G3  Kn + Gul3
s Ge __ Ga_|
AL = Cey - vm) [K,,, T Ga3 K+ G3
(1 -C)G, G Gn
K+ Gyf/3 K,+ G,/3
—x . Gnm ¢
Ky = Ko+ 30+ 1 -G
Ki = Kn + (G, — Go)I3 Ky + 4G/}

vip = Covp + (1 = Cplv +

+ 1

Gu _ Gl + C) + Gull = Cp

Gn G -CH+GAl+C)

Gy _ G

G. 't 7@ L Ko + 7G,0(1 — 3)
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where the subscripts m and f refer to matrix and fibers respectively, and C; is
the volume fraction of fibers. From these relationships the five independent
components of the second order elastic constant tensor can be calculated using
the relationships [7]

Ch=En+ 4} Ky

Ci2 = 2Kyvn

Cn =Gy + Kn

Cyn= -Gy + Kn

Ces = Gy )

The above expressions give relationships for the elastic properties of a
composite reinforced with spherical particles and aligned fibers. The character-
istics of a composite where the fibers are randomly oriented in a plane are then
to be determined.

Composite with 2-D Randomly Oriented Fibers

A schematic representation of the problem is shown in Fig. 1. The figure shows
that all the fibers are lying in the x,x;-plane but randomly oriented in that plane.
To determine the elastic properties of this configuration, the approach of Chris-
tensen and Waals [7] is used. In this approach, the effect of a random orienta-
tion of fibers on the stress to strain ratios o//g; is analytically equivalent to
finding the average value of the ratio o//¢/ when all possible orientations are
taken relative to a fixed axis as shown in Fig. 2. In the 2-dimensional case this
can be expressed as

(%f)mm = % = ©)

08j

where the stress to strain ratio in the integrand refers to the aligned fiber system
shown in Fig. 2 and § is the angle between the x|- and the x;-axis. The stress to
strain ratios are then calculated using the tensor transformation laws for
stresses and strains
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a o
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and the stress-strain relationships for a system with aligned fibers which are
given by

a1 = Cpey + Cigy + Ciags

g, = Cpe + Cnep + Cey

oy = Cipg) + Cyey + Cngy
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as = V2oACyn — Cn)ey
a0s = C6655
s = Cests ®

The stress to strain ratio '/, can then be evaluated by imposing a strain along
the 1'-direction such that the conditions

E
er =0, [ #1 9)

are satisfied. The transformation laws, Egs. (6) and (7}, and the stress-strain
relationships, Eq. (8), then yield

o) = 0 €080 + o, sin‘0 — g sin2@

? = (Cy, cos'0 + C;» sin%d
1
? =Cp cos-9 + Ci> sin26
1
T8 = —Cy sin’ (10)
€

Combining Egs. (10) results in

’

i:T' = Cy cos*0 + 2C); sinf cosd + Ca sin*d + 4Ce, sin’ cos? (11)
1
Integration according to Eq. (5) gives

Qn = (_‘{1

1
= = 2 b ¥+ 2
) i = § B3C + 2Ci + 3C + 4C) (12)
The stress to strain ratio evaluated in Eq. (12) will correspond to one of the
components, (. in the second order elastic constant tensor for the composite
in Fig. 1. The other components in this tensor can be evaluated similarly and are
found to be

(O i
O = (:—) =3 (Cii + 60z + Cyy — 4Cx)
i
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For the composite with 2-D randomly oriented fibers, these five components
fully describe the stress-strain relationships which are given by

o = Oner + Qe + Qe

gy = Qpep + Qner + Ques

o= Qney T Oner + Ques

T3 = Qut,

os = QuEs

o6 = 12001 — Qe (14)

From the five components of the second order elastic constant tensor, the
effective Young's and shear moduli of the composite can be calculated using
the relationships

. Qi Q2 — Qn) + Qi (O — 0001)

Ey = Oy Qw0n — Q@

Eu - Q.U Qll +~ QIZ

G = L'QL:@

G = Qu )
Measurements

Specimens

The metal matrix composites used in this investigation are comprised of an
aluminum alloy as the mu:~v m~* " and alumina particles and fibers as the
reinforcements. The three aluminum alloys used as matrix materials consist of
Al-12% Si. Al-129% Si-Cu-Ni-Mg, and commercially pure aluminum.

The composites were manufactured using the squeeze casting method and
produced in the form of bars. From these bars. blocks measuring 10 x 12 x 20
mm were cut. The blocks were machined and ground such that opposite faces
were flat and parallel to within 10 um.

The coordinate systems for the specimens were chosen such that the x;-
and x,- directions are in the fiber rich layers at right angles to each other and the
xy-direction i1s perpendicular to the fiber rich layers. The volume fractions of
particles and fibers in these samples were estimated using optical microscopy.

I
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Ultrasonic velocities

Measurements of ultrasonic velocities were performed using the pulse-echo-
overlap method, which is described in detail elsewhere [8]. A pulse of approxi-
mately 1-usec duration of variable pulse-repetition rate is generated and im-
pressed on a transducer that is acoustically bound to the specimen. The
reflected echoes are received by the same transducer, amplified, and displayed
on an oscilloscope. Two of the displayed echoes are then chosen and exactly
overlapped by critically adjusting the frequency of the cw oscillator. This fre-
quency fis employed to compute the ultrasonic velocity using the relation V =
2If, where [ is the thickness of the specimen. X- and Y-cut transducers of 10 and
2.25 MHz were used for the generation of the longitudinal and transverse
waves respectively. The elastic constants were calculated using the relation-
ship

Cpp = Cyjj = pV} p=12.....6,ij=123 (16)

where p is the mass density, and indices ij are contracted to index p according
to Voigt's notation.

Microstructure

The microstructure of one of the composites used in this study is shown in Fig.
3. The micrographs show the microstructure in the three directions for the
composite with hiittenaluminum as the matrix metal. The dark, almost circular
areas are the particles, whereas the fibers appeat as light grey rods, 20-50 um
in length. The micrographs clearly illustrate that the fibers are lying in one
plane, with its normal in the 3-direction, but they are randomly oriented in that
plane. Furthermore. the 1- and 2-directions exhibit the same features. They both
show a low fraction of fibers oriented in the x;x;-plane and have the same
particle content. These observations confirm that a transversely isotropic be-
havior of the composites is to be expected.

The area fractions covered by the fiber and particle reinforcements in each
plane were estimated in the three specimens. This was accomplished by scan-
ning the faces of the specimen under an optical microscope and taking photo-
graphs at several ‘‘representative’” locations along the three chosen directions.
The area fractions were obtained from these micrographs by adding the pro-
jected area on the face of all particles and fibers and dividing by the total area.

Results

Table 1 contains the area fractions of the fiber and particle reinforcements in
the composites used in this investigation as estimated from the optical micros-
copy study. Table 2 includes values of the elastic constant found in literature
[9] for the aluminum alloys used as matrices for the composites. It also includes
the measured mass densities of the composites and the volume fractions of the
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Fig. 3. Microstructure in three orthogonal
directions of the composite with Hiitten-
aluminum as the matrix metal: a direction 1:
b direction 2: ¢ direction 3. The dark almost
circular areas are alumina particles whereas
the light grey rods of 20-50 um in length are
alumina fibers. Bar = 20 um.

-

alumina reinforcements. The volume fractions of particles and fibers were ob-
tained by taking the average of the area fractions in the three directions.
Table 3 lists the ultrasonic velocities. V;, measured, where i and j denote
the directions of propagation and polarization respectively. In Table 4 the
calculated and measured elastic constants are listed. Column 2 gives the elastic
constants of the effective matrix, consisting of the aluminum matrix and the
alumina particles. These constants were calculated using Egs. (1) and (2).
Using Eq. (3) the elastic constants of composites with aligned fibers were

Table 1. Area percentage of alumina particle and fiber reinforcements in MMC
specimens

Matnix
Al-Si-Cu-Ni-Mg Al-Si Hittenaluminum

Direction Particles Fibers Particles Fibers Particles Fibers

i 18.7 29 15.7 2.0 13.7 27
2 20.4 2.5 15.2 2.7 12.5 32
3 12.0 1.9 8.5 12.6 1.0 13.2
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Table 2. Elastic constants, densities, and volume fractions of MMC
specimens used in calculations

Material E (GPa) v p (kg/m?) C, C
Al-Si-Cu-Ni-Mg 73.1 0.33 2825 0.17 0.06
Al-Si 71.0 0.33 2760 0.13 0.06
Hiittenaluminum 68.9 0.33 2793 0.09 0.06
Alumina 372.0 0.224

Table 3. Ultrasonic velocities measured in MMC specimens

Matrix
Velocity tm:s) Al-Si-Cu-Ni-Mg Al-Si Hittenaluminum
Vi 7032 6967 6670
Va 7033 6969 6712
Va 6907 6835 6524
Vi 3694 3656 3419
Vi 3669 3578 3336
Vi 3681 3657 3439
V2 3683 3594 3345
Vy 3644 3560 3325
Vi 3675 3606 3329

Table 4. Calculated and measured elastic constants of MMC specimens with Al-Si-
Cu-Ni-Mg. Al-Si. and Huttenaluminum as the matrix metal

Elastic Effective Aligned Random
Matrix constant maltrix fibers fibers Measured
Al-5i-Cu-Ni-Mg Ey 9.2 109.1 102.2 100.4
E: 9.2 99.5 102.2 100.4
Ew N2 9.5 99.6 98.7
Gy, 4.8 37.5 8.8 38.4
Gn 4.8 7.5 7.4 7.8
Gan 348 37.2 37.4 38.2
Al-Si Ey, 85.0 102.3 94.9 95.0
E. 85.0 92.0 94.9 95.4
E 85.0 92.0 92.1 929
Gis 2.0 4.6 359 369
Gn 320 34.6 344 35.1
Gn 320 342 4.4 358
Hittenaluminum Ey 78.1 95.8 88.0 84.6
E.; 78.1 84.9 88.0 854
Ew 78.1 849 85.0 81.9
G\ 296 320 3135 32.8
G 396 R0 319 31.0
G 296 31.7 9 31.0
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computed and the results are listed in column 3. Column 4 lists the predicted
elastic constants when the fibers are randomly oriented in one plane. These
results were obtained by employing Eqgs. (4). (12). (13), and (15). These values
are to be compared with the measured values given in column 5. The measured
data were computed using the densities given in Table 2 and the ultrasonic
velocities listed in Table 3 and are found to be reproducible to within 1%.

Figure 4 displays the calculated effects of changing the fiber content on the
anisotropies in the Young's and the shear moduli of the composites. In these
calculations the effective matrix consists of the Al-Si alloy as the matrix metal
and 6% alumina particles. Figure § illustrates the calculated effect on the same
moduli upon changing the particle content in the effective matrix. In these
calculations the Al-S1 alloy was also used as the matrix metal and the fiber
content was 6%.

Discussion

From the metallurgical observations it is seen that the area fraction of fibers in
the 3-direction is vastly higher than those measured in the two directions in the
plane perpendicular to the 3-direction. In the I- and 2-directions the fiber con-
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tent is the same to within = 0.4%. Also the micrographs show that the particle
content in the 3-direction is significantly lower than those in the other two
directions. However. the projected area of the particles is almost circular in all
three directions indicating spherical particles. Due to this result and the fact
that the manufacturing process should not produce any anisotropy due to the
distribution of particles. it is assumed in the calculations that the particles are
spherical and that they are randomly distributed.

The experimental results in Table 3 show that the composites exhibit a
transversely isotropic behavior which is in agreement with the microstructure
shown in Fig. 1. This behavior requires that E,; = E» and Gj3 = Gy which isin
agreement with observations shown in Table 4. to within 2%. Furthermore. the
elastic constants in the 3-direction differ from those in the 1- and 2-directions
such that Ex < E), and G,: < Gi2. This also agrees with the microstructure
observed in the three samples since the fiber rich plane is expected to be
elastically stiffer than the planes normal to that plane.

The general behavior of the predicted elastic moduli as a function of the
fiber or particle content is shown in Figs. 4 and 5 respectively. It can be seen
from these figures that the four elastic moduli increase almost linearly with the
fiber content and as a consequence the anisotropy exhibit the same behavior.
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As the particle content is increased the elastic moduli deviates slightly from a
linear relationship. Furthermore, E3; and G); increase at a faster rate than Ej,
and G); such that the anisotrophy produced by the fibers is slightly lowered as
the particle content is increased.

Since the fiber content in the three samples was the same, the anisotropy
was expected to be more prono..nced in the composite with the soft matrix than
that with a stiffer matrix. As can be seen in Table 4, this behavior was experi-
mentally observed in both the Young's and the shear moduli. As the stiffness of
the effective matrix is increased, the difference in the moduli between the
directions in the plane and normal to the plane of the fibers becomes less
pronounced. The quantitative values of the anisotropies are also well predicted
by the model. For the material with the lowest particle content (9%), the values
agree almost exactly. As the particle content gets higher, the observed aniso-
tropies deviate from those predicted but the agreement is still good. This trend
is expected since the model assumes no interaction between the particles and
the fibers, and accordingly the model will be more applicable to composites
with low particle content.

The deviation from predicted anisotropies can also be explained from a
microstructural point of view. When the particle content is increased it be-
comes more difficult to orient all the fibers in a specific plane. In addition, it
seems that the presence of particles will force some of the fibers to be oriented
such that they make a small angle with their ideal orientation, and the true
configuration will differ from that assumed by the model. The anisotropy pro-
duced will then be lower than that predicted.

Summary

The elastic behavior of metal-matrix composites reinforced with homogene-
ously distributed particles and fibers randomly oriented in two dimensions, has
been investigated. Using a model which assumes no interaction between parti-
cles and fibers, the elastic moduli as well as the elastic anisotropies were
calculated for the composites containing 9. 13, and 17% particles and 6% fibers.
The values computed by the model are found to agree very well with those
determined from ultrasonic velocity measurements.

These results indicate that for relatively low volume fractions of reinforce-
ment the interaction between particles and fibers can be neglected on determin-
ing the effective elastic properties of these composites. This simplifies the
calculations significantly when these composites are to be used in applications
since the effects of adding particles that improve the overall properties, and
fibers that generate the directionality, can be estimated independently. This is
applicable for volume fractions that are not too high.

Acknowledgment. This work is sponsored by the Army Research Otfice under contract No.
DAALO03-88-K-0096.




96

References

{. H.M. Ledbetter and S.K. Datta. J. Acoust. Soc. Am. 79:239 (1986)
2. B. Budiansky. J. Mech. Phvs. Solids 13:223 (1965)

3. 1.D. Eshelby. Proc. Roy. Soc. (London) 241A:376 (195T)

4. T.S. Chow. J. Appl. Phys. 48:4072 (1977)

S. Z. Hashin and B.W. Rosen. J. Appl. Mech. 31:223 (1964)

6. R. Hill, J. Mech. Phvs. Solids 12:199 (1964)

7. R.M. Christensen and F.M. Waals. J. Comp. Mater., 6, 518 (1972).
8. K. Salama and C.K. Ling, J. Appl. Phys. 51:1505 (12€35)

9. Metals Handbook, vol. 1, 8th ed. ASM (1961)

Grelsson and Salama




Boc. GNDE Vol 10, 199] in Fess

ACOUSTIC NONLINEARITY IN METAL - MATRIX COMPOSITES

H. Mohrbacher, D. Lee, E. Schneider * and K. Salama

Department of Mechanical Engineering

University of Houston

Houston, TX 77204, (713) 749-4455

* Fraunhofer Institute for Nondestructive Testing, Germany

INTRODUCTION

The elastic behavior of a solid consists of linear and nonlinear contributions. The
linear part is represented by the well known Hooke's law which is given in tensorial
notation as

0y = Ciui & (1)

where ojj and € are the stress and strain tensors, respectively, and Cijl is the tensor of
the second order elastic constants (SOEC). This relationship is sufficient for many
engineering calculations since deviations from a purely linear elastic behavior are smalil.
Hooke's law, however, is not sufficient for an advanced characterization of the elastic
behavior of materials. This is due to the fact that many of the physical and mechanical
properties of materials are of nonlinear nature. The nonlinear elastic behavior can be
investigated using ultrasonic techniques because of their high sensitivity for small nonlinear
effects. Among the nonlinear effects are the stress and the temperature dependences of
ultrasonic velocities in the solid. These effects have gained considerable interest in the last
decade, particularly for the nondestructive evaluation of applied and residual stresses [1],
and also for the microstructural characterization of materials [2]. Another physical
manifestation of the nonlinear elastic behavior of solids is the acoustic nonlinearity
parameter. This parameter can be determined from measurements of the amplitudes of
fundamental and second harmonic when an originally sinusoidal wave gets distorted while
propagating through the solid. The nonlinearity parameter can also be calculated from a
combination of second and third order elastic constants. In previous studies [3], the
nonlinearity parameter was found to be sensitive to microstructural changes in aluminum
alloys and in particular to the content of precipitates of the second phase.

Metal - matrix composites are a new class of materials wich contain a metallic
matrix and a metallic or ceramic material as a reinforcement. The bulk properties of these
composites can be tailored by changing the volume percentage, geometry, distribution, and
orientation of the reinforcement. Due to the different coefficients of thermal expansion for
the matrix and the reinforcement material in MMCs, the creation of thermal stresses during
manufacturing is unavoidable. Therefore, the nondestructive characterization of these
composites is necessary in order to monitor their mechanical properties and to guarantee
their quality.

In the present study the eftcct of the volume content of reinforcement in metal -
matrix composites (MMC) on the two nonlinear clastic quantities, namely acoustoelastic




constants and nonlinearity paranicter has been investigated. The nonlinearity parameter is
determined using two different methods and the results are compared.

THEORETICAL

Basically, all nonlinear elastic effects are due to the anharmonicity of the interatomic
potential. Thus, relationships betweei. quantities describing the elastic nonlinearity are
expected. In order to develop quantitative parameters for the description of elastic
nonlinearity, it is convenient to use the thermodynamic derivation of the elastic constants
starting from the elastic potential of the solid. If the lattice arrangement of a solid is
disturbed by an infinitesimal strain € due to the presence of an elastic wave, the energy of
deformation per unit volume ®(¢) can be expanded as a power series of strains such that

ad Rl P
de)=¢ + €.+ £ +———¢E€E E + ... 2
=85 5 de0e, U dede e U @

According to Brugger [4], the elastic constants of the order n are defined as the n-th partial
derivatives of the ¢lastic potential with respect to strain as
C,. = 3 De, 3)

ij...

If up to third order terms in € are considered in eq.(2), the stress-strain relationship can be
written as

0= Ci & * Cijamn ExCmn 4)

where the Cijkimn are the third order elastic constants (TOEC) which need to be added to
Hooke's law (1) to allow for nonlinear deviations.

For isotropic materials, the tensor of the second order elastic constants reduces to
two independent second order elastic constants, known as L.amé constants A and p. These
constants can be determined directly from ultrasonic experiments by measuring the wave
speeds of longitudinal and shear waves using the relationships :

p:pv,f. and k+2u=pvi (5)

The tensor of the third orcer elastic constants reduces to three independent third order
elastic constants in isotropic materials. These are called the Mumaghan constants 1, m and
n. In order to measure these constants using ultrasonic methods the propagation velocities
of three different wave modes have to be determined as a function of an applied uniaxial
strain. The relative change in the ultrasonic velocity of a given wave mode with the applied
elastic strain normalized by the velocity of the strain-free specimen is called the
acoustoelastic constant (AEC) which is a characteristic of the material. The Mumaghan
constants can be evaluated from acoustoelastic constants using the relationships [6]

| =—A [l;v Mol + 2 (8v21/v0 + VM) +2v ]
1-2v Vv de 1+v o€ de

E)v23/v0 l 8v21/v0
+

m=2(A+ Y +2v—1 (6)
u)[l+v o€ 1+v  ode ]
ov../v ov../v
e 4 270 a3 0—1~v]
l+v Je o€

where v 1s the Poisson's 1atio, A and y are the Lamé constants, vij is the velocity of an
ultrasonic wave with propagation direction i and polarization direction j, vq is the velocity



in the unstrained specimen and ¢ is a uniaxial strain applied in a direction perpendicular to
the propagation direction.

Another nonlinear quantity which can be obtained if eq.(4) is inserted into the
equation of motion for particles in the solid's lattice, leads to the nonlinear wave equation

2 2
du, a0k » du, 'y,
2 YTz T RVigg T2 (7)

ot da da
where u 1s the particle displacement, i is a mode index depending on the polarization and
the propagation direction of the wave, a is a coordinate along the direction of wave
propagation and vi is the wave velocity of the mode i. The quantity Bi is the modal acoustic
nonlinearity parameter of the solid and can be expressed as a linear combination of the
second and third order elastic constants [5]. The solution of the nonlinear wave equation
can be given as

u; = Ajpsin(ka- wt) + A, cos 2(ka - wt) (8)

where A1 and A, are the amplitudes of the fundamental and second harmonic waves,

respectively. The acoustic nonlinearity parameter is related to these amplitudes as
S

T2 T2 9

Ka A’ )

where o is the fundamental frequency, k is the propagation constant and a is the distance
measured from the generating transducer to the instantaneous position of the fundamental
wave in the solid. Its magnitude determines the extend of the distortion of the fundamental
wave. If one considers a longitudinal wave mode in an isotropic solid, the acoustic
nonlinearity parameter is related to the Lamé and the Mumaghan constants by

2l +4m
A+2u

Using this relationship the acoustic nonlinearity parameter car. be calculated when the third
order elastic constants are known.

B =3+ (10)

EXPERIMENTAL

In this study, two different sets of specimens were used. The matrix was an Al -
8091 alloy in one case and in the other case an Al - 7064 alloy. The chemical compositions
of both alloys are shown in table 1. As reinforcement material these compositzs contain SiC
- particles. The particles had a more or less globular shape, ranging from 1 - 5 pm in size.
The material has finally been extruded to rods. Micrographs taken for different cuts of the
specimens revealed a planar random distribution of the reinforcement in the plane normal to
the extrusion direction and a particle alignment along the extrusion direction.

A block diagram of the experimental set up for the determination of the nonlinearity
parameter is shown in Fig.1 . A lithium niobate transducer attached to the specimen by a
solid bond is used to generate ultrasonic pulses. These pulses have typically a center
frequency of 10 MHz and a bandwidth of 200 kHz. The ultrasonic signal propagates along
the extrusion direction of the specimen whose surfaces are made parallel to each other and
are lapped optically flat. The 10 MHz fundamental as well as the 20 MHz harmonic signal
cause a distortion of the free surface of the specimen. The displacement amplitudes carried
by the two frequencies are measured in order to determine the nonlinearity parameter using
€q.(9).




Table 1: Chemical compositions of the aluminum alloys in weight percent .

Alloying Elements

Alloy Si Fe Cu Mg Zr Li Zn Cr Co Al
8091 0.02 0.0l 1.90 0.80 011 270 ---- rem
7064 005 010 200 230 020 - 710 012 022 rem

For measurements of the absolute amplitudes, the capacitive detector technique
described in [8] has been used. This technique allows the detection of displacement
amplitudes of a free surface with a sensitivity of 10-3 A.

In order to verify the behavior predicted by eq.(9), the amplitudes of the
fundamental and second harmonic have been measured as a function of increasing source
voltage. A plot of the harmonic amplitude A, vs. the square of the fundamental = plitude
A, yields a linear relationship over the whole range of the driving voltages used . shown
in Fig.2 . The slope of a linear fit through these data is used to calculate the neuilinearity
parameter. In many of the engineering materials the attenuation of ultrasonic waves
depends on their frequencies. Unless the attenuation of the second harmonic is twice that of
the fundamental, a correction has to be made according to relationship [9]

a, - 20.1

B =B, (11)
1-exp[( 20L1 - @) 2]

where o and a; are the attenuation coefficients of the fundamental and the second
harmonic waves respectively. The attenuation coefficients for 10 and 20 MHz longitudinal
waves in the MMC-specimens have been used to perform this correction. Another
correction due to diffraction effects has been neglected because of the large lateral
dimensions of the specimens.
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Fig. 1. Block diagram of the capacitive detector system.
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Acoustoelastic constants are determined by applying a uniaxial compressive stress
while ultrasonic waves are propagating transversely to the load direction. The relative
~hanges in velocity for three different wave modes (Fig.3) are measured using the pulse
echo overlap technique. This technique is described in detail in [10] and can resolve
velocity changes up to one part in 106. The changes caused by the acoustoelastic effect are
typically in the order of one part in 104 and depend on the polarization of the wave. The
slope of the velocity data vs. the elastic strain 1s used to determine the acoustoelastic
constants and then, with egs.(6), to calculate the third order elastic constants. The average
values resulting from measurements in two different propagation directions within the
quasi-isotropic plane are used to represent the material parameters.

RESULTS AND DISCUSSION

From measurements of densities and of ultrasonic velocities the second order elastic
constants of the metal matrix composites have been evaluated by Lee et al. [13] using
€q.(5). Their results are listed in Tab.3 . From this table it is seen that both, the Young's
and shear moduli increase linearly with the SiC content. The Young's modulus follows
closely the isostress condition represented by

Ecomp = [EAI*Esic]/[Esic+fAl + EAlfsiC] (12)

where f is the volume fraction of the indicated phase.

The values of the acoustoelastic constants of the metal-matrix composites,
determined from the relative changes in the ultrasonic velocity as a function of elastic strain,
are the average values of the data obtained by Lee et al. [13] and are listed in Tab.2 . The
AEC:s are reproducible within 2%. From the table, one can see that the values of the AECs
of the 7064 alloy are larger than those of the 8091 alloy. Also the AECs for both sets of
MMCs decrease as the content of SiC increases. Smaller absolute values of AECs indicate a
smaller change in the ultrasonic velocity as a function of elastic strain which means a
smaller deviation from the ideal Hookean behavior of the material.




Table 2 : Averaged acoustoelastic constants of the examined MMCs.

Matcnal Acoustoelastic Constanis
AEC 22 A% AEC 21 A% AEC 23 A%
Al - 8091 1.12 0 -2.59 0 0.87 0
+10% SiC 1.08 -3.7 217 -194 0.82 -5.7
+15% SiC 0.92 -17.9 -1.91 -35.6 0.74 -14.9
Al - 7064 1.44 0 -3.10 0 1.93 0
+15% SiC 1.20 -16.7 -2.35 -24.2 1.27 -342
+20% SiC 0.88 -389 -1.85 -40.3 0.92 -52.3

From the acoustoelastic constants and the second order elastic constants, the third
order elastic constants were determined using eq.(6). From an analysis of error propagation
the inaccuracy is found to be highest in the Mumaghan constant | and is equal to 15%. The
inaccuracies of the constants m and n are 5% and 3% respectively. In general, the values
of the Murnaghan constants m and n are not significantly influenced by the content of SiC
within the experimental error. The constant m, however, has a tendency towards less
negative values, whereas the constant n is showing no trend at all. The Murnaghan constant
1 changes considerably and even becomes positive when SiC is added. Compared to the
elastic moduli i and E, the third order elastic constants do not show a clear relationship
with the content of reinforcement, whereas those of the elastic moduli increase in a
predictable manner.

The Murnaghan constants 1 and m are used to calculate the nonlinearity parameter
according to eq.(8) . The values of the calculated nonlinearity parameter are listed in Tab.4
as Beale. Also included in Tab.4 are the values of the directly measured nonlinearity
parameter as Pmeas. The experimental error is 10% for the calcuiated and 15% for the
measured nonlinearity parameter. For both Bealc. as well as Bmeas. the values decrease
considerably with increasing volume percentages of SiC.

As can be seen from Fig.4, the values of the calculated nonlinearity parameter for
the 8091 as well as for the 7064 alloys change linearly as a function of second phase
content. The values of the composites with the Al - 8091 matrix appear to be smaller than
those of the composites with the Al - 7064 matrix.

Table 3 : Second and third order elastic constants of MMCs.

Material SOEC [GPa} TOEC [GPa])
A U E 1 m n
Al - 8091 42.0 30.1 77.7 -34 -320 438
+10% SiC 428 354 91.0 34 -313 -466
+15% SiC 424 376 957 33 288 454
Al - 7064 54.1 269 71.4 -33 -359 -515
+15% SiC 57.4 35.1 91.5 43 -343  .516

+20% SiC 543 380 99.2 24 309 486




Table 4 : Calculated and directly determined nonlinearity parameter.

Material Bealc. A% Bmeas. A%
Al - 8091 10.2 0 10.6 0
+10% SiC 7.4 -27.5 8.5 -19.8
+15% SiC 6.2 -39.2 6.9 -349
Al - 7064 10.9 0 8.7 0
+15% SiC 7.1 -349 6.6 -24.1
+20% SiC 6.2 43.1 5.8 -333
B 13T B 13
12 1 a 8091 12 F
1r o 7064 1 F
10 10 |
9 :' 9|
8 f S r
Ay 7k
6r 61
g b [EEPU BEPEN U NP T 5 N . .
0 5 10 15 20 25 0 5 10 15 20 25
Vol. % particles Vol. % particles
Fig. 4. Calculated nonlinearity parameter Fig. 5. Measured nonlinearity parameter
as a funtion of particle content as a funtion of particle content

A plot of Pmeas. vs. the volume fraction of reinforcement is displayed in Fig.5 . The
values of both composites are close to a linear relationship between Pmeas. and the volume
fraction of SiC. One value, namely that of the unreinforced 7064 specimen, is clearly
deviating from this behavior. Interferences in the backwall echo sequence obtained on this
specimen indicate a strong texture in the extrusion direction. Since the nonlinearity
parameter varies significantly in different lattice directions of single crystalline materials, a
texture is likely to change the value of the nonlinearity parameter.

The lower values for the nonlinearity parameter of SiC reinforced aluminum alloys
can be understood from the fact, that ceramic materials with low nonlinearity will lower the
nonlinearity parameter of aluminum alloys when a composite is formed. This does not
mean that a law of mixture is applicable to model the bulk nonlineanty of a metal-matrix
composite. Influences from the interfacial region between matrix and reinforcement are
expected to contribute to the nonlinearity of the composite.

Because there is no significant difference between the calculated nonlinearity
parameter uetermined in the isotropic plane and the one directly measured along the
extrusion direction, it can be assumed that the nonlinearity parameter depends primarily on
the overall content of reinforcement. Influences from the particle alignment in the extrusion
direction could not be detected within the accuracy of the measurements.

Theoretical investigations by Cantrell [ 12] have shown that the nonlinearity
parameter 1s related to the coethicient of thermal expansion (CTE) which is also a nonlinear




quantity. In previous studies [11, 14], the coefficient of thermal expansion in MMC:s has
been found to decrease with increasing amounts of reinforcement. Measurements of the
CTEs of the composites investigated in this paper are in progress.

CONCLUSIONS

The results of this study show that the acoustoelastic constants and the acoustic
nonlinearity parameter are influenced by the amount of reinforcement in metal-matrx
composites. Therefore, they are promising candidates to characterize the mechanical
behavior of MMCs nondestructively. Also, the two quantities clearly indicate a decreasing
elastic nonlinearity of the composite with the increasing content of SiC. The nonlinearity
parameter changes linearly as a function of second phase content.

The absolute values of the calculated as well as of the directly measured acoustic
nonlinearity parameter are in good agreement within the accuracy of the measurements.
This shows that both techniques, measurements of absolute amplitudes using the capacitive
gap receiver and measurements of the acoustoelastic effect, are suitable methods for the
determination of the nonlinearity parameter.

The direct measurement of the nonlinearity parameter using the capacitive gap
receiver requires a careful preparation of the specimen surfaces. The measurement of the
acoustoelastic effect is restricted to simple specimen geometries since it requires the
application of external stresses. The selection between the two methods depends on the
geometry condition of the sample.
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Acoustoelastic characterisation of materials

J. H. Cantrell and K. Salama

The increasing demand for new, more reliable
materials, which are often used in hostile
environments, has led to the necessity of
establishing equally reliable, quantitative
t=chniques for the non-destructive evaluation
{NDE) and characterisation of such materials.
Non-destructive evaluation methods are
commonty used in applications ranging from
materials processing and control to monitoring
the effects of environmental degradation and
the estimation of remaining useful life of
materials. Although linear ultrasonic methods
have long been among the most popular and
useful of NDE methodologies, this review is
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concerned with the considerable effort that has S - compliance coefficients
s2en expended recently on understanding, yki comp

aeveloping, and applying non-linear [ nme . _
acoustoelastic techniques. Although t; thermodynamic tension
applications to complex materiais are usually T temperature

correlative, recent progress in the quantitative 7;; iniual stress tensor ) )
modelling of the acoustoelastic properties of u; components of particle displacement
muitiphase alioys in terms of material vector
composition is also reviewed. Consideratle u; displacement gradient
emphasis is placed on understanding the iz; displacement gradient referred to
refattonship between non-linear acoustoelastic deformed state
properties and the fundamental atomic (1;) acoustic radiation induced static
structure of simple materials. Such .

. ‘ displacement
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U internal energy per unit mass

understanding of the effect of residual and

applied stresses on the acoustoelastic and U, components of wave polarisation vector

thermoelastic measurements of metallic alloys. v true sound velocity
Similar considerations of magnetic domain v, longitudinal wave true sound velocity
structure provide an explanation of the effect v». v3 shear wave true sound velocity
of stress on the magnetoeliastic properties of W natural sound velocity
ferromagnetic materials. Implications of these W, natural sound velocity at zero stress
advances to the non-destructive x; components of particle position vector
characterisation and evaluation of materials
are discussed. IMR/223 «; direction cosines

: a; transformation coefficients
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List of symbols

a, Lagrangian {material) coordinates £me Mmagnetoelastic strain
A Huang coefficients n, Lagrangian strains
b crack half length 6 dilatation
B, ecomponents of Boussinesq stress tensor X, k; wave propagation vector
C.,.i Brugger elastic constants A. o Lamé constants
¢, depiction constants Ay thermal stress tensor )
£ volume fraction of spherical inclusions \Toc saturation magnetostriction along [ab<!
fo total volume fraction of second phase wu shear modulus
components w, shear modulus of inclusion
F inverse of wave propagation time 4m shear modulus of matrix
H. H. acoustoelastic constants v., Poisson’s ratio of matrix
H maanetic feld strength £, z. amplitudes of fundamental and second
[, effective stress intensity factor harmonic waves
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Introduction

Ultrasonic methods have long been used to charac-
terise various properties of materials ranging from
the fundamental to the most practical applications.
Ultrasonic measurements of fundamental material
properties, for example, have provided some of the
first experimental evidence of the double well
interatomic potential in vitreous silica.! They have
also been used to quantify the superconducting
state of materials,” and have provided well estab-
lished methods of testing lattice dynamical theories
of the solid state.™ Several recent review articles
and monographs.®' highlighting the practical
applications of ultrasonic methods, are testimonials
to the flexibility and utility of ultrasound in assess-
ing properties of materials from simple crack
detection to the characterisatiorf of material micro-
structure and defect induced changes in elastic
propertics. Indeed, ultrasonic techniques have
become an indispensable tool in the non-destructive
characterisation,  evaluation, and testing of
materials.

The purpose of the present review is to sum-
marise recent developments in non-linear acousto-
elasticity that bear directlv on the thermoelastic
properties. and in appropriate cases on magneto-
elastic properties, of multiphase materials. Non-
linear acoustoelasticity entails consideration of the
vanation in the sound velocity as a function of the
state of stress in the material as well as the
consideration of acoustic harmonic generation and
radiation induced static stresses and strains in the
material generated from an initally pure sinusoidal
source. [n order to emphasise the common basis of
these related, but quite distinct, non-linear phe-
nomena the theoretical treatment of each phenom-
enon s initiated from the same set of generalised
wave equations. While it will become apparent that
acoustoelastic measurements can be wused to
determine the effective second and higher order
elastic constants as well as various mechanical
moduli of materials, the emphasis here is on the
caiameters associated with and defined from the
measurement process itself. These measurement
defined acoustoeiastic constants and non-linearity
parameters offer the most direct route 10 the
characterisation of many impoctant material prop-
erties from interatomic potentials to stress fields
and the state of fatigue. The connection with
fundamental dynamical properties is emphasised
throughout this review in an effort to underscore
the role of material anharmonicity in acoustoelas-
ticity and thus to provide some link between
macroscopic acoustic measurements and the atomic
properties of elemental or single phase material.

14991 Val 268 NAa
jReiv i « i ST NG

Intermatioral Materizls Reviews

L4

Lhe complextlies 1ntroduced 1n measuremeits ot
multiphase materials are addressed from a consider-
ation of models giving the effective parameters as a
function of total volume fraction of second phase
constituents.

A considerable portion of the review is also
devoted to the effects of residual and applied
stresses on ultrasonic measurements. Indeed, one
of the most important problems in the non-
destructive characterisation of materials is the
determination of residual and applied stresses. Such
stresses play a fundamental role, for example, in
the corrosion or embrittlement of metals and in
crack initiation. Acoustoelastic techniques as a
means of characterising such fields have been
extensively reviewed elsewhere.® and so will not be
repeated here. Rather. in keeping with the spirit of
this review, the role of stress fields as they affect
the thermoelastic and, in ferromagnetic solids,
magnetoelastic properties of materials is addressed.
In doing so recent advances in stress field cssess-
ment not previously considered are presented. In
order to clarify the meaning of the various elastic
and mechanical moduli from a measurement per-
spective, the connection between static or low
frequency dynamic moduli measurements generally
performed in mechanical testing and the second
order elastic constants obtained in bulk ultrasonic
measurements is given in Appendix 1.

The microstructural variaton in acoustic prop-
erties has been the keyv to the development in the
past decade of a number of new microscopes which
utilise acoustic waves in some fashion for obtaining
the microscopic images.''-!? The images so attained
provide information quite different from that
obtained in conventional light or electron micro-
scopes. Different types of acoustic microscopes use
different energy sources, such as electron beams,
lasers. and piezoelectric transducers, for generating
the acoustic images and are descriptively named.
for example. the scanning electron acoustic micro-
scope, the thermoacoustic microscope, and the
scanning acoustic microscope. Although the image
contrast and spatial resolution attainable in such
microscopes are in large measure dictated by the
details of energy source-material interactions, the
dependency on the local variations in the material
elastic or thermoelastic properties, including
residual stresses. is a necessary consideration in
such interactions. Indeed. in some cases features
directly associated with the residual stress fields can
be imaged."” revealing even the subtlest influence
of thermoelasticity on the contrast mechanisms.
The concepts summarised in this review, when
combined with an appropnate model of the micro-
scope under consideration. are pertinent to an
understanding of many of the contrast mechanisms
in the various acoustic microscopes. particularly
those involving acoustic bulk wave propagation.

General equations of elastic
wave motion

Consider first the adiabatic propagation of an
elastic. bulk travelling wave in a lossless solid of




arbitrary crystalline symmetry. The equations of
motion (Newton’s law) in Lagrangian (material)
coordinates a; are’ (Einstein summation of
repeated indices assumed throughout text)

Fx,

Po

ar

30
= (1)
o4
where x; are the components of the particle position
vector. ¢;; are components of the stress tensor, ¢ is
time, and pg is the mass density of the solid in the
unperturbed (natural) state. If the stress tensor is
defined in terms of Lagrangian strain derivatives of
the internal energy per unit mass U(ay,ns,S) where
Nks are the Lagrangian strains and S is the entropy,
the stress tensor is commonly called the first
Piola-Kirchhoff tensor. Formally, the first Piola-

Kirchhoff tensor is defined by'*

sl

Uij T Podix P (2)
Jnyk

where a;, are the transtormation :oefficients

denned by

N S .

qdy = Olk + - Se e e - .. (.’)
Jdy

In equation (3), J; are Kronecker deltas and «; =
X, = a, are components of the displacement vector.
The Lagrangian strains 7, are defined by'®
)12 {4)
Many researchers (Brillouin'’” and Born and
Huang'® among others) have preferred to use the
Boussinesq stress tensor B,;. which is defined in
terms of derivatives of the internal energy per unit
mass with respect to the displacement gradient.
(Gujoa;) = u,;. Using equations (2)=(4). it is
straightforward to show the equivalence of the two
SLTess tensors by writing

me = a0 —

_ sU S SU U
By = po— = py —— — = puax — = g,
Tty SUG O Sy
(3)
Another stress tensor of relevance here is the
thermodynamic tensions «,; defined by
_ sU
(’J - p') - (6)
M,
Huang'” expanded the internal energy per unit

mass in terms of the displacement gradients as

ool = 4.0, - = Ajpintd
1 N
+ ::!_ -"uklmn“u“ki“mn BRI . . - (7)
where A, ... are referred to as the Huang (or

propagation) coetficients. Equation (7} serves to
denine the nth order Huang coefficients as

. SNy
4 = V) 3
ki = Onl - | (:))
SWLGSU g Gutda=n)
The ralationship between the Huang coefficients

and the elastic constants referred to the Lagrangian
strain measure Cjjy... was found by Wallace'* to be

Aij = C.j = T.j
A = Tpdix + Gijii
Ajjkimn =

lemnéik + C]kl’\lalm + Cljnlékm + Ci;klmn
A (9)

The Ciji.. are the nth order elastic coefficients of
Brugger’ defined for adiabatic conditions by the
nth order derivative of the internal energy per unit
mass with respect to the Lagrangian strains

Y
Cini.. = po ot ) (10)
i oM./ p=0
It is clear from equations (6) and (10) that Gj; = T
is the thermodynamic tension evaluated at n = 0.

From equations (5) and (3) we find that g;; = r;
Cij = T;; when Gu/da, hence 7, is zero. The
coefficient C;; is thus identified as the initial stress
Tii in the solid.

Acoustoelasticity

Traditionally, acoustoelasticity has been viewed as
that aspect of material anharmonicity giving rise to
the variation in sound velocity as a function of the
state of stress in the material. Although acousto-
elastic measurements are a popular means of assess-
ing stress fields, the emphasis here is to explore the
relationships between acoustoelasticity and certain
aspects of material microstructure. In particular,
the use of a measurement defined acoustoelastic
constant as a material characterisation parameter is
considered. Applications of the concepts developed
. here to two phase matenials are also emphasised.

General theory

It is necessary to obtain the elastic wave velocities
as a function of applied or residual stress. It is
expedient then to expand the stress g in equation
(1) about the homogeneously deformed initial state

X. 1.e.
;a - -
aG;; Sty iy
U,i = (Gi]),\' + (O"‘—_—) (_—‘. - +

u, / xX\oa oy

- -

AN

= (o) + (22) ey ()
o“kl X cqy

where uy = 1, — i, the overbar represents the
value of the parameter referred to the deformed
state. and the expansion coefficients are evaluated
at the deformed state X. From equations (1), (5),
(7). cad (11) we thus obtain

) ) - ~) -

[Can ¢ S‘Mi - Ty AN
po—5 = Po—= = Liju——— - N

sr sr da\Sa;

where the propagation matrix

- 50.; . fese
Ly = <8 ) = At + Aijktmalima + .-
H X
Assuming wave propagation of the form
= Uvexpiwt — K -a) (14)
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where N = R/|&| is the unit Propagation direction
and W = w/|F] is designated®' as the natural velo-
city, since it is the velocity referred to the natural
state. Substituting equation ({4) into equation (12),
the set of linear equations for the unit polarisation
vector U is obtained

(LijaN;Ny — poW28)U =0 . . . . (19)

Equation (15) is the basic equation of acoustoelasti-
city. It provides the variation in the sound velocity
(here the natural velocity) as a function of applied
or residual strain and wave polarisation.

Consider now the rate of change of the square of
the natural velocity with respect to the applied
stress p (uniaxial or hydrostatic) evaluated at the
natural configuration (i.e. where p = 0).

] - [(EEEE)
Ip p=0 op Glan’ *GTlpq
< (5(P0W2))]
Otles p=0
. (afab) [5(POW:)J
=iz Sesab| ———
op p=0 Olleg p=0
(16)
where Srap = (IN/Shap)p=0 are the isothermal

compliance coefficients. For applied hydrostatic
pressure or uniaxial compression of magnitude p
in the direction M

/’a,‘:’b) —J,p for hydrostatic pressure

p=0 B — MM, for uniaxial (17)

compression

Substituting equations (9), (13). and (13) (for the
natural state) into equation (16) gives the equations
of Thurston and brugger’!

) (oo
op p=0 Sp /p=u

+ U,Uk(ZPoWZ‘)Sjkao

= NeNSpanCivsip)] - - (18)
where

(pOW’Z)P=O = (POWE)) = Cmrns“'Vr"VsUmUn (19)

Equations (18) and (19). derived for solids of
arbitrary crystalline symmetry, specifically show the
dependence of the natural velocity and the change
of natural velocity with stress in terms of the second
and third order elastic constants of the solid. From
the experimental measurements of natural velocity
as a function o stress the equations suggest that
one can determine the second and third order
elastic constants of the maternal. Indeed, calculation
of the elastic constants from such measurements
have become quite well established >#-2! There are.
in general, 81 second order elastic constants and
729 third order elastic constants. For solids of
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lowest crystalline symmetry (triclinic crystal system)
this number reduces to 21 independent second
order elastic constants and 36 independent third
order efastic constaats. For higher symmetries the
number of independent constants are even further
reduced. For example, the independent elastic
constants reduce to 3 second order and 6 third
order constants for cubic crystals of highest symme-
try and for isotropic solids (the highest attainable
symmetry) the numbers are 2 second order and 3
third order elastic constants.

For isotropic solids the second order constants
often used in the [iterature are the Lamé constants
A and w and the third order constants are often the
Murnaghan constants [, m, and n. These constants
are related to the Brugger elastic constants Cjy;.
for isotropic solids as®

).+2].L=C“= C22= Cs3

A=Cpha=C;3=0C3=Cy=Cy=Cxn
= Cu = Css = Ces

20+ d4m = Cy,

20 -2m+n=Cx

{ = C2/2
m = Ciss
Hn = 4C456 . . . . . . . . . . (20)

where all other second and third order elastic
constants are zero. Yoigt notation is used in the
above equations for the Brugger elastic constants
whereby the single subscript & replaces the sub-
scripted pair (ij) according to the following
scheme:

2 lorl3 21lorl2

6

2o0r23
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k=1
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Ly Ll
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In a typical ultrasonic experiment. one generally
measures as a function of applied stress the
variation in time required for a generated plane
wave front to propagate between parallel samgpie
surfaces. An inverse measure of that propagation
time is the parameter F defined by

o N 1))

where v is the true sound velocity and / is the
propagation distance in the sample in the homo-
geneously deformed state. Thurston and Brugger”!
have shown that the true velocity is related to the

velocity referred to the natural state W by
v=10YW . . L (22)

where /y is the propagation distance in the undefor-
med sample. From equations (18) and (22) and an
expansion  of (/3') in terms of the Lagrangian
strains.”” one can obtain the expressions of Hughes
and Kelly™ derived from isotropic solids whish
relate the true sound velocity to the applied siress
o. Their expressions. for example. for axial siress
applied in a direction perpendicular to the wave




propagation direction are

U S S
Povy H e LT . m o+ A+ 2u)
)

o A
p(,v S U imr — A+

’/\U 4,11.
. o At . -
Povy = — — Im — n—2ip . . (23)
34y 2u

where v, is the longitudinal velocity and v» and vs
are the velocities of shear waves when the polari-
sation direction is parallel to and perpendicular to
that of stress, respectivety,

There is advantage, however, in measuring
changes in the natural velocity as a function of
applr'd stress, since such measurements are
obtained from time measurements in the deformed
state but the length measurements are referred to
the unacformed length of the solid. This is seen by
substituting equation (21) into equation (22) to get

F=0R'W . )

From equation (24)

o LET LW 1 sewy

When evaluated at p = 0. it has become popular to
refer to A o, the ‘stress acoustic constant’ or the
‘acoustoctastic’ constant. It s clearly a material
parameter, since it depends on the second and third
order elast.: constants of the material. Cantrell**
has determined the genecral relationship between
the fractonal change in the natural velocity with
respect 0 stress for a wave of polan:anon U
propagating atong N. i.e. the generalised acousto-
elastic constant  Hy (U .N), and the fractional
change in the true velocity v to be

H, (0.8 = (1 LY V) dov .. (26)
v Cnrs

where 1, are the Lagrangian strains resulting from
the imposed stress, and S, are the compliance
coelficients. For acoustic wave propagation perpen-
dicular to the direction of applied stress in isotropic
solids. equation (26) shows that acoustoelastic
constants are also equal to the fractional change in
the true velocity wich respect to the applied stress.
For acoustic longitudinal wave propagation along
the direction of applied stress in such solids, the
fractional variations in the true aad natural veloci-
ties differ by an additive constant.

The exact meaning of the experimental
parameter F in equation (25) depends on the
patticular experimental technique. For example, if
Oone uses a resonance or resonance dernived tech-
nique. then F is the acoustic standing-wave reson-
ance frequency f. If one uses a pulse coincidence
technique, then F 1s the inverse pulse repetition
rate. [t s impoctant to emphasise that all the above
equations specificallv refer to acoustic bulk wave
propagation in matertals. The elastic moduli or
constants used to quantifv this wave propagation
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are constants referred to unbounded or bulk solias
and accurately represent acoustic vave propagation
when the dimensions of the sample are generally
large compared with an acoustic w.veiength, Such
elastic  constants, however, are quantitatively
related to the elastic or mechanical modult typically
obtained from static engineering measurements or
low frequency dynamic measurements as shown in
Appendix 1.

In general, for a given compination of stress,
propagation, and polarisation directions, the
relationship between the natural sound velocity and
stress may be obtained by mtegratmg equation (25)
to get

Wo)y=Wo+ WoHo . . . . . . . (27)

where W, = W0), the natural velocity at rero
stress. As suggested by equation (27) unkncwn
stresses can be determined when both the natural
velocity in the absence of stress and the acousto-
elastic constant are known independently. This
approach was first used by Crecrait,™ who showed
that acoustoelasticity could be used as a practical
method for determining applied and residual stres-
ses in engineering materials. Theoretically, one
could calculate the acoustoelastic constants from
equations (18), (19), and (25) if the second and
third order elastic constants are known. Unfortu-
nately, measurements of the third order elastic
constants have been performed mostly on pure
materials and some simple alloys. Indeed, the
technique mostly used for such measurements have
been that of determining the stress dependence of
the natural velocity, i.e. the acoustoelastic constant
of the material. It i1s important to point out here
that the measured velocity and stress dependent
velocity changes in engineering materials depend
strongly on microstructural features which make it
necessary to perform a calibration between velocity
and stress (i.e. determine the acoustoelastic con-
stant) for each matenal in order for the method to
be used in the determination of unknown stresses.
Microhomogeneity, texture, and weak anisotropy
of the material. which are usually neglected in
engineering applications of the theory of elasticity,
cannot be neglected in the apphcanons of acousto-
elasticity. Results by Smitk et al.*® show that third
order elastic constants for polycrystalline materials
can differ widelv, even for alloys having the same
composition. For structural aluminium of slightly
different composition differences as large as 50%
are observed.

Models of two phase systems

Most experimental measurements of the acousto-
elastic constants have been performed either on
simple, single phase matenals or on complex,
multiphase materials that have been treated as
single phase materials. It is important to recognise
that in quantitatively characterising complex
materials one must aiso understand the effects of
material composition on the measured acoustic
parameters. In order to calculate the acoustoezaslxc
constant in a two phase alloy, Salama er al.”
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assume that the p:recipitates 1z the alloy can be
represented by a dilute suspension of spherical
particles in an innmte solid solution matrix. The
physical meaning of this idealisaton s that the
precipitates are so small and so far apart that all the
interactions between them can be neglected, no
matter what the size of the representative volume
may be. The effective clastic constants of such
materials have been calculated by Christensen®’
using the energy methods approach and Eshelby's
formula®™ for the calculation of strain energy in
systems containing inhomogeneities. For a dilute
concentration of inclusion i, Christensen found that
the effective shear and bulk moduli u and & are
related to those of the matrix as

B o B0 vl = wieallf g

Hom (7= 5vin) + 24 = Sva)(pilpm)
and

S Ul L I 29)

Km L+ [(k, - km)‘/(krn + 4 pum'3)

where the <nbscripts m and (. respectively, denote
matrix and inclusion, fis the volume fraction of the
spherical inclusions under dilute conditions. and vy,
is Poisson’s ratio of the matrix. The ultrasonic
longitudinal velocity v s related to the elastic
moduli u and & as’

pvi= ks dpd L (30)

where pis the average mass density of the medium
(martrix pius inclusions).

Case 1
For aan inclusion with elastic moduli not too
different from those of the matnx, such that
wo= pgoand A = Ln. but o wi ~ um = 0 and
A, = A == 0, cquauons (28) and (29), respectively,
become

My = Mgy T (/“L' - /‘L.'n)f Coe e e (31)
and
k= km T (”\v - km)f : . - o (32)

Equations (31) and (32) indicate that the elastic
modult ot a two phase matenal is a function of the
inclusion concentration as well as the difference
between the corresponding constants of the inclu-
sion and matrix. Substituting equations (31} and
(32) into equauon (30) gives for the longitudinal
velocities

vy = pm(l’T)m - f[/)m("f)m - p!(VT)I] (33)
For alloys containing dilute concentrations of pre-

cipitates, p = Py and equation (33) can be written
as

. - Ao Oi ;- A
w:wm«vhmm—jvm SNES
Ii
Equation (34) indicates that the longitudinal velo-
city in the two phase alloy increases or decreases
from that of the solid solution phase according to
whether  tine  density  of  the precipitates  is
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respectively higher or lower than that of the solid
solution phase. since the difference between the
.ongitudinal velocities in the precipitates and the
sohid solution is usually small.

Consider the application of a umiaxial stress in a
direction perpendicular to that of the longitudinal
wave propagation direction. Differentiating equa-
tion (34) with respect to stress g and assuming that
in the dilute approximation (v),, = v; and that,
tenuously, the densities of the two phases present
remain roughly unchanged with stress variations,
the fractional change in ultrasonic velocity in the
two phase material is estimated as

HERT0
o) 4]

ﬂv,‘ m* do
A ] o

From the definition of the acoustoelastic constant,
equation (25). it is concluded from equation (33)
that the change 1n the effective longitudinal wave
acoustoelastic constant for the two phase system
caused by the presence of precipitates is linearly
proportional to the volume concentration of the
inclusion and depends on the elastic moduli of the
precipitates and the solid solution phases, as well as
their stress dependences. These latter quantities are
generally unavailable and make the calculations
of the effective acoustoelastic constants rather
difficult.

Case 2

When the elastic moduh of the precipitate are much
greater than those of the matrix. fe. w, > un
and k; > k.. equations (28) and (29) become.
respectivelv

I5(1 ~ v)f
= U T gy ——————— oL (36)
e 24 = v )
and
k=hky+ (ko = 4u/3) f N YA

These equations indicate that the effective sheai
and bulk moduii of the two phase ailoy system do
not depend on those of the precipitates; however,
they vary hnearly with their concentrations. Substi-
tuting equa.ions (36) and (37) into equation (30)
and considering v; = v,[2(1 — v)]'", where v. is the
shear wave velocity, we obtain in the dilute
approximation that

(1—ﬁﬁ:ohm+%§§§f%ﬂﬁm (38)

Again in order to ‘obtain an expression for ihe
effective acoustoelastic constant in alloys containiaz
precipitates with elastic moduli much higher than
those of the solid solution. equation (38) is differen-
tiated with respect to the stress ¢. again under the
condition that the stress is applied in a directicn
perpendicuiar to the wave propagation directicn.




Under such conditions and  considering  the
relationship between the longitudinal and shear
wave velocities, vi = v3[2(1 — v)/(1 — 2v)]. the
refative change in the eftective longitudinal wave
acoustoclasiic constants My is given as

(["{l)m - 'l[| ’(fll)m - (HZ)m] “a
-—_— = Bm ———— N
= i (9)
where
15(1 = v )(1 = 2v)
Bm = ; 40
(“1 - Svm)_ ( )

and where (£15), is the shear wave acoustoelastc
constant and (H})q is the longitudinal wave acous-
toelastic constant of the matrix material. Equation
(39) indicates that the relative change in the
etfective longitudinal acoustoelastic constant H, of a
two phase material is linearly proportional to the
volume friction of the dilute second phase. The
constant of proportionalitv depends on the Pois-
son’s ratio of the solid solution phase and the
relative difference between longitudinal and shear
wiuve acoustoelastic constants. Comparison of the
theoretical models with experimental re-ults s
presented in the section on "Experimental results’
below, but first techniques for measuring the
acoustoelastic constants are priefly discussed.

Measurement techniques

The ultrasonic measurement techniques generally
used in the derermination of acoustoelastic con-
stants are based ca the propagation of continuous
waves (CW), radiofrequency (¢f) bursts (tonebur-
st5), or broadband pulses in the medium of interest.
Comprehensive descriptions of these techniques
have been civen in several review articles and
monographs. ¢.¢. McSkimin.™® Truell et al..*® Papa-
dakis.*! Breazeale er al. ** and Ratcliff.> [n view of
the extensive review literature on acoustoelastic
measurement methodology details are not given
here. but 1t 15 pounted out that the techniques
generally are based on measured parameters that
are ultimately referred to a uime standard. The
specific technique may culise a standing-wave pat-
tern, a pulse comeidence or pulse overlap scheme in

e, |

which a certain phase relationship among the pulses
1s maintained. or even a hybrid of the above. In any
case the mecasurement parameter of interest is
generally a frequency or the inverse of a pulse
repetition rate which is measured as a function of
the impressed strain or stress in the material.

Experimental results

In order to study the sensitivity of acoustoelastic
constants to changes in microstructure, Heyman et
al.** measured the acoustoelastic constants in the
four carbon steels AISI 1020, AISI 1045, AISI
1095, and ASTM 333B. In steel alloys, carbon in
excess of the solubility limit (0-02 wt-%) forms a
second phase, namely iron carbide (cementite),
which precipitates from the solid a-ferrite.
Compared with fecrire, cementite is very hard and
its presence within the tcrrite increases the strength
of the steel. Table 1 lists the values of the
acoustoelastic constants and the longitudinal wave
velocities obtained for these steels. Also included in
the table are the volume fraction of second phase
precipttates in these allovs and the percentage
changes in the acoustoelastic constants with respect
to those of the 100% solid solution. The latter are
obtained by extrapolating the experimental values
of the acoustoelastic constants to 100% solid
solution. The relative variations in the acoustoelas-
tic constants as a function of volume fraction of
precipitates are plotted in Fig. 1, which shows that
the acoustoelastic constant decreases unearly as the
amount of carbide (cementite) phase is increased in
the alloy. In this study the amount of carbide phase
is calculated using the lever rule and the nominal
carbon content in the alloy. These results were also
confirmed by Allison er al.** where the acoustoelas-
tic constants in the four steels AISI 1016, AISI
1045, AISI 1095, and AISI 8620 are found tc
decrease linearly with the increase of the carbide
phase.

More recently Schneider er ai.® studied the
relationship between the acoustoelastic constants
and percentage of precipitates in the five aluminium
allovs 1100. 3003, 5052, 6061, and 2024. Aluminium
allovs that contain small percentages of other
elements such as copper. magnesium, and silicon

Table 1 Variations of acoustoelastic constants and longitudinal ultrasonic veloci-
ties with volume fraction of compound precipitates in carbon steels and
heat treatable aluminium alloys

Volume Acoustoelastic Change in
fraction of Velocity, constant, ascoustoelastic

Alloy precipitates, % ms™! GPa consant, °%

Steet

100% farrite 0 440° 0
AlSI 1020 31 $889 418 S
ASTM 5338 33 5380 410 68
AiSH 1045 7-3 5383 375 14-8
AlSI 1085 147 £910 325 2641

Aluminium

10G° sotid soiution 0 83° o]
5061-T8 {Al-Mg-Si) 30 6112 79 4.8
2024-T35 0 (AI-Cy) 5.3 63153 74.7 10-0

* From ex{rapolation of acousta2lasiic canstanis v. volume fraction

internatioral Materials Seviews 1837 Vol. 36 No. 4




L1V

= -
a

G -
= 400t
a L
9 .
=

<] -
o

° L
% 350
a -
D

g -
> -
2

3 L
< 300

0 10 20

% Carbide Phase
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form intermetallic precipitates such as CuAls,
CuMgAls, and Mg-Si. These precipitates are very
hard and cause the strengthening of the aluminium
alloy. Some values of the acoustoelastic constants
and the longitudinal wave velocities are also gtven
in Table 1. The results of this study, shown in Fig.
2. reveal that the acoustoclastic constants in the
heat :reatable alloys 6061 and 2024 decrease as a
function of the second phase precipitates. The
behaviour in the work hordenable alloys 1100,
3003, and 3032, however, is opposite, ie. the
acoustoelastic constants increase with the increase
of percentage of precipitates.

A plot of the acoustoelastic constant as function
of aging time in aluminium alloys is shown in Fig. 3.
The results indicate that the acoustoelastic constant
does not change significantly with aging time,
although the average size of the precipitate particles
are expected to change.” It is thus inferred that the
acoustoelastic constant is not significantly intlu-
enced by changes in the size and distribution of
sccond phase precipitate particles. at least of the
size represented in the figure.

Equations (35) and (39) obtained above repre-
sent .ne changes in the acoustoelastic constants
when a second phase precipitate i1s in equilibrium
with a solid phase. By considering that the changes
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2 Graph of acoustoelastic constant of heat treat-
able Al alloy 6061 (Al-Mg-Si) and 2024 {Al-Cu} as
function of volume fraction of second phase
precipitates
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in the acoustoelastic constants of carbon steels
measured by Heyman er al.™ and by Allison et
al..;” and of the aluminium alloys 6061-T6 and
2024-T351 measured by Schneider er al.”® are due
only to the presence of precipitates in the solid
solution phase, a comparison between theory and
experiment can be made. Further, since the precipi-
tates in both systems investigated are of higher
rigidity than those of the solid solution phase,
equation (39) is considered to be a better represen-
tation of the experimental data.

Figures 1 and 2 indicate that the relative changes
in the acoustoelastic constants for the longitudinal
waves vary linearly with the volume fraction of
second phase. as predicted by equation (39). The
figures also show that the constant of proportion-
ality between the relative changes of the acousto-
elastic constants and the volume fraction of second
phase in the steel and aluminium systems are the
same and approximately equal to 1-8. This means
that the acoustoeiastic constants in these alloys can
be calculated empirically using the values of this
quantity in the 100% solid solution material and the
volume fraction of second phase in the alloy. This
acoustoelastic constant is the proper vatue to be
used in the residual stress determinanion of the
atloy.

Considerable research effort has been devoted in
recent vears to the development of metal matrix
composites. The non-destructive characterisation of
the elastic and anelastic behaviour of such materials
is essential to their manufacturing processes. The
effects on the measured elastic properties of
variations in the volume fraction of second phase
SiC particles in a number of aluminium alloy
matrices have been reported. ™ Of particular
interest here oare the meastred values of the
acoustoelastic constants as a function of the voiume
percent SiC in the matrix. A typical data set is
‘hown in Fig. 4 for SiC particles in a 7064 alu-
minium alloy matrnix. The relationship between the
acoustoelastic constant and the percent SiC is seen
to be approximately linear up to roughly 1C%
volume fraction. This behaviour s a nominai
agreement with cquauon (39) and thus indicates




| O 7084 AEC 11
- ! A 7064 AEC13
8 120+ O 7064 AEC 12
o } ® 7064 AEC 22
B I A 7064 AEC 23
2 E0r m 7064 AEC 21
5 [
8 | >
© ot
; -—
i.\
)
2 0k
]
2 a
3 2
< sof x‘\
.30 . . . . ,
) 5 10 15 20 25

Volume Percentage of SiC

4 Graph of acoustoelastic constant as function of
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that up to 10% velume fracton, the SiC particles
are considered to be of dilute concentration in the
alumintum matnx. Thercafter. the curve rapidly
becomes non-inear.

Non-linear wave propagation

A further aspect of acoustoelasticity is the distor-
uon of an acoustic waveform as it propagates
throuen a material. Such distortion is another
manitestation of the same material interatomic
anharmonicity that governs the stress dependence
of the sound velocity, but it results from a rather
different mechanism involving self-induced stress
fields. The quantitative measure of such non-linear
wave propagation is the acoustic non-linearity
purameter 3. Lt like the acoustoelastic constant. is
found to be a very usciul parameter for assessing
muaterial properties.

General theory
Consider the solic to be in the natural state. 1.e.
7., = U. Substituting equations (3) and (7). into
cguation (1) and retaining first order non-hnear
terms ’-:".\'CS

o STl
i’\ukl + f‘niklrnn ':li:" _— ("“)

>r L >an- S(I’E(h

The self-resonant or mutual resonant solution to
equation (41) assuming the boundary condition
u, = ZUcoseir ata =) o (42)

is to a frst order in the non-linearity'™

= {u) = S;Ucostrar — K- J)

<
i

~—

+ 35 kN Ucos(Qee — 28 - 3)8 + . (43

where /1s the distance of wave propagation and g 1s
the non-linearity parameter defined by

Abkipg VNN UL,
g o= - ke (4
‘—1‘,“\&.\,0,( «
Just as i the case of the acoustoelastic coetficient.,
the noa-hnear.y parameter is seen from equations

AV ailu g wu ud e nd Ui L 2veuhil anu diieu
order clastic constants of the matenal, and the
directions of wave propagation and polarisation.
The term (u,; in equatioe (43) is a constant that
represents a static or de displacement arising from
the non-iinearity of the material. The magnitude of
the static displacement has been the source of some
controversy which has been recently resoived by
Cantrell er al.**-**> They showed that the static
displacement is intrinsically linked with the exist-
ence of a non-zero acoustic radiation stress in the
solid which when properly included in the pertur-
bation solution to equation (41) yields the value

(w) = BE7KIULS N €5

The sign of the static displacemen. is governed by
the sign of the non-linearity parameter. For pure
mode acoustic wave propagation directions the sign
of the non-linearity parameter is typically positive
and according to equation {43) leads to a radiation
induced static dilation in the solid within the spatial
extent of the acoustic wave. A negative non-
linearity parameter, on the other hand. gives rise to
a radiation induced static contraction. This phe-
nomenon has been confirmed in single crystal
silicon.*>** germanium.® and vitreous silica.*

Measurement technique

Equation (43) indicates that the acoustic non-
linearity parameters may be obtained either from
measurements of the absolute amplitudes of the
fundamental acoustic wave and generated second
harmonic wave or from measurements of the
fundamental and static displacement signals. Spe-
cifically, if £ and £, are the measured amplitudes of
the fundamental and second harmounic signals, then
the non-linearity parameter g is determined by

e

diples

(6)
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1
-
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A block diagram of the equipment arrangement
typically used in non-linearity parameter meas-
urements is shown in Fig. 3. The diagram shows the
setup for both the harmonic generation and the
static displacement techniques. A rf signal (typically
in the range 3-30 MHz) from a CW oscillator 1s
combined in a mixer with a gaung puise from a
fogic and timing generator. The rf pulse is amplified
bv a broadband linear rf power amplifier and is
used to drive a narrow band lithium niobate
transducer bonded to one end of a cylindrical
sample. The transducer generates a gated ultrasonic
signal or toneburst which propagates through the
sample The toneburst is received by a broadband
air-gap capacitive transducer at the opposite end of
the sample.

The capacitive transducer is a parallel plate
arrangement in which the sample end surface
functions as the ground plate. The other plate is an
opmalh flat electrode which is recessed approxi-

mately 7 um from the samgle surface. A dc bias
(tvplcallv 3150 V) s applled through a 1 MQ
resistor to the slectrode. Gauster and Breazeale™
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5 Block diagram of typical equipment arrangement for measurements of acoustic non-linearity parameteis

have shown that the measurement of the output
voltage from such a capacitive arrangement may be
converted to a displacement measurement of the
sample surface using the relation

V= Vylts) I ¢ 7))

where V4 1s the output voltage, V, the dc bias
voltage, u the displacement of the sample surface,
and s the gap spacing between the capacitor plates.
Yost and Breazeale? have shown that the
capacitive transducer is capable of measuring
displacement amplitudes of the order 107!'® m,
which is quite adeguate for measurements n the
range 107-107'" ;m representing typical ampli-
tudes of second harmonic and static displacement
signals.

The displacement amplitudes of the fundamental
and harmonically generated toneburst are obtained
by switching the output of the capacitive transducer
into the appropnate {(preferably narrow band if)
preamphifier. The output of the preamphifier is sent
mto a rectifier and filter assembly which converts
the toneburst into a detected signal. The output of
the sample and hold s measured by a voltmeter
and recorded. The capacitive transducer is now
switched out and a Thevenin equivalent network is
switched into the circutt. A substitutional cali-
bration  signal corresponding to either the
fundamental or harmonically generated signal, as
the case may be. is now switched into the Thevenin
equivalent network and adjusted in amplitude until
the voltmeter connected to the sample and hold
reads the same value as that of the ultrasonic
toneburst measurement. Since the amplitude of the
calibration signal is measured at the input to the
Thevenin equivalent network, the measured value
1s equal to the signal produced by the capacitive
transducer.

In order to display the acoustic radiation induced
stac  displacement  puise the output of the
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capacitive transducer is connected to a low fre-
quency (of order 3-300 kHz) preamplifier by a
short, low capacitance lead. The output of the
preamplifier is sent to an oscilloscope where the
static displacement signal is displayed. A template
is placed over the screen to record the static
displacement shape. The shape of the satic
displacement signal is that of a right angled triangle
whose slope is equal to the right-hand side of
equation (45) with / = 1. Calculation of the non-
lincarity parame'er is obtained from measurements
of the slope and the fundamental amplitude Z;.

Acoustic non-linearity parameters
and material properties

The acoustic non-linearity parameters f play a
central role in determining the thermoelastic prop-
erties of crystalline solids, since thev directly
quantify the anharmonic character of the lattice
modes. Cantrell*® has shown that if one considers a
crystalline solid to consist of a large number of
incoherent non-hnear acoustic radiation sources
identified with the vibrating particles of the lattice,
then randomisation of the resulting acoustic field
together with the assumption of a stochastically
independent, fluctuating radiation field at the abso-
lute zero of temperature leads to an expressiun of
the temperature dependent rawation field in terms
of the zero point field. This leads direcily to
expressions of the thermodynamic state functions
that intrinsically  include the non-linearity
parameters as a direct measure of structure depen-
dent modal anharmonicity. These ‘non-linear’ state
functions in turn lead to calculations of the tem-
perature dependence of elastic moduli®® as well as
to calculations of the thermal expansion coeffi-
cients® directly in terms of the non-linearity
parameters.

The reifationship betwesn the non-linearity




Table 2 Comparison ot structure, voOdINY, allu
acoustic non-linearity parameters aiong
{100] direction of cubic crystals

Structure Bonding o Range of /3
NaC! lonic 14.6 14-0~154
bee Metailic 3-2 7-4-3-8
fce {inert gas) van der Waals 5-4 5-8-7-0
fce Metallic 56 4.0-7-0
Fluorite lonic 3-8 3-4-4-6
Zinc blende Covalent 2:2 1-8-3-0

parameters and fundamental lattice propertics is
intrinsic. Cantrell®® hac shown from a survey of
crystals of cubic symmetry that for a given acoustic
mode (i.e. direction of acoustic wave propagation
and polarisation} the non-linearity parameters are
found to be ordered according to the crystalline
structure. Results for wave propagation along the
{100] direction in cubic crystals are given in Table 2.
Listed in the table are the structure of the crystal,
the type of atomic bonding, the range of values of 3
tor all crystals having a given structure, and the
average values of the Bs in that range. The acoustic
non-linearity parameters are seen to be stronglv
ordered according to the type of crystalline struc-
ture. The range of values of § for a given structure
15 distinct; overlap of ranges occur «aly slightly for
fec and fluorite structures. The influence of the type
of atomic bonding may be inferred from a compari-
son of the fcc structured crystals The Ss for the fec
metatlic bonded crystals and the fcc van der Waals
bonded crystals are approximately equal even
though the difference in strength of these bonds is
very large. It is inferred that the influence of the
bonding on the value of the on-linearity parameter
15 small compared with that of the geometrical
arrangement of atoms defining the structure. )

[n order to explain these results Cantreli™
»ilowing an approach suggested by Ghate*? and by
cliki ana Granato.™ proposed a model based in
T st approximation on a short range. two body.
¢: ntral force potential of the Born-Maver tvpe. He
st »wed that the non-linearity parameters depend
on v on the atomic arrangement of the crvstal and
the “hardness” parameter of the Born-Maver
pote wtial. He also found that the hardness
para 1eter together with the atomic nearest neign-
bour ‘eparation distance determines the shape or
curvature of the potential curve. The dependence
on the shape. rather than the magnitude, of the
potenti ‘| curve provides a general explanation of
the resi'ts of Table 2 including the insensitivity of
the acoustic non-linearity parameters to the bond
strength.

While the model successfully explains the results
of Table I for crystalline solids. it does not readiiv
predict the sign and magnitude of the non-linearity
parameter Or vitreous silica, an amorphous solid.
The B parar eter for vitreous silica is negative™ in
contrast to -he positive values of the parameter
tvpicallv mez-ured for the pure mode propagation
Jdirections in cryvstalline solids. In addition. Yost
and Cantreil™ have observed what theyv believe to

h
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induced stauc displacement pulse, (1;) in equation
(43). into a series of bulk solitons in sampies of
vitreous silica. The large negative non-linearity
parameter gives rise (0 a contractive statc pulse n
the material which when combined with the large
velocity dispersion in the medium provides condi-
tions suitable for the generation of solitary waves or
solitons. The observations of bulk solitons and
acoustic radiation induced static contraction in
vitreous silica may be of some significance in the
statistical mechanical treatment of amorphous
structures.™ a subject of considerable current inter-
est. Vitreous silica is known to have a negative
thermal expansion coefficient at low temperatures
where long wavelength vibrational modes dominate
the dynamical properties. At higher temperatures,
where the expansivity is positive, the short
wavelength vibrational modes become more popu-
lated and the lattice dynamics is dominated by a
local quartz-like structure having positive non-
linearity parameters along the pure mode propa-
gation directions. The sign of the thermal expans-
ivity at high and low temperatures is thus reflected
in the sign of the non-linearity parameters appro-
priate to the atomic structure ‘seen’ by the domin-
ate lattice vibrational mode at that temperature.

The significance of atomuc structure and its effect
on the non-linearity parameter is not diminished
in considerations of complex materials. Material
microstructure is governed fundamentally by even
more complicated arrangements of atoms, including
random or amorphous-like configurations in many
cases, which also affect the non-linearity parameter.
Of particular concern here, however. is the fact that
the mechanical properties of many eagineering
materials are derived, at least in part, from the
presence of secondary phases in the solid solution
matrix. The presence of the second phase, for
example. raises the flow stress: and the extent of
strengthening depends to first order on the volume
fraction. size. and characteristics of the second
phase precipitates which form during the manufac-
turing process. A mathematical model has been
proposed by Cantrell er al.”® giving the effective
non-inearity parameter of an allov as a function of
total volume fraction of second phase precipitates.
Although the relationship is in general non-linear
(see Appendix 2 for derivation) the equation is
approximated to within experimental error for
volume fractions of second phase up to ~130% by
the linear expression

.

B =Bl + Rf,) (48)
where
{ C‘ [ 6|CH
R = L2 - i
“‘[(Cc”).‘( 'P'( c“))e}
B Cn (2_ ﬂan> (49)
(Cip B(C51)p

In these equations f, denotes the total volume
fraction of second phase precipitates; the Cys are
‘quasi-isotropic’ second  order elastic constants
1891 No. 4
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(Voigt notation). The overbar denotes the values of
the parameters for which f, = 0, t.e. pure solid
solution: the subscript p refer to values for the total
sccond phase precipitates taken collectively: the
subscript 1 refers to the individual constituents of
the solid soluticn: the superscript ¢ refers to solid
state consutuents: and ¢, is the "depletion constant’
for constituent { formed from solid solution.

Razvi er al.’’ provided experimental confirmation
of equation {49) for measurements of § in the heat
treatable alumaium atloy 7072 (Al Zn -Mg). The
results of  aeir measurements of the effective
non-linearity parameter g as a function of volume
fraction of tecond phase precipitates f;, are shown
i Fig. 6. A least squares fit to the data results in a
lnear curve with a [-0 correlation coefficient given
by the sol.d hine n the nfgure. The lack of
experiment. | measurements of the aon-linearty
parameters and the elastic constants of individual
second phses of Al 7075 prevents an exact calcu-
faton of the cffective non-linearity parameter of
the materiy directly from equation (48). None the
less, the o rreement between the linear form of
egquation (-3) and the linzarity of the experimental
data is evic ent. Measurements of the intercept and
slope of the curve vield a value of 6-29 for the
noa-lineart. v parameter of pure sofid solution of Af
7075 and a value of 0-12 for R.

It was  sumed in the mathematical model that
the numbc - of randemly oriented grains contained
within a ¢ thiength of the propagating sound wave
:s sufficien v large that a good statisucal sampling
of quasi-is- tropic behaviour s achieved. It was thus
expected to3t the 3 cm pathlength in the specimens
allows 4 vide vanation of average grain size
without viorating the quasi-1sotropic assumption. A
manifestaticn of proper statisticai sampling would
he the invariance of the non-linearity parameter as
a function of grain size. Figure 7 shows the
measured non-lineanty  parameters in Al 707§,
corrected for attenuation, as a fuacyon of aging up
to 237 h. No significant vaniation in the effective g
occurs although the average grain size is expected
to change. It is inferred from these results and irom
Fie. 6 that the mathematical model quaintatively
oredicts the correct varniation in the effective non-
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linearity parameter of Al 7075 as a function of
volume fraction of second phase precipitates.

The dependence of the non-lineanty parameter
on the second phase precipitates for alloys and the
dependence on the hardness parameter of the
Born-Mayer potential for single crystals suggest a
possible relationship between the non-linearity
parameter and the engineering hardness number
even though engineering hardness is measured by 2
plastically deforming test and the pertinent atomic
mechanisms are complicated by microstructural
details. None the less, measurements of the non-
linearity parameters on aluminium alloys as a
function of Rockweil F hardness were reported by
Li er al.”” Their results are shown in Fig. 8. Simiiar
measurements on [8§8%Ni maraging steel as a
function of Rockwell C hardness were reported by
Yang e al.*¥ and are shown in Fig. 9. In both cases
there is a strong correlatior between the non-
tinearity parameters and the hardness number.

Finally. Elber™ reported the discovery of a crack
closure phenomenon that occurs with metal fatigue.
He noted that closure of the crack planes near the
crack tip can occur while the applied stress s sull
tensile. The existence of a crack closure stress
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8 Plot of acoustic non-linearity parareter of Al
alloys v. Rockwell F hardness
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opens the way for defining an effective stress
intensity factor /,. given by

(50)

where o is the applied tensile stress, Ouosure the
crack closure stress, and b the crack half length.
The precision of £, depends on how well one can
determine  Ouosure. It is generally difficult to
determine Ogoore eXperimentally, since conven-
nonai crack opening determination 1S imprecise.
However, Yost et al.”™ have resolved this difficulty
bv developing a technique based on the fact that as
a crack 1n a compact tension specimen is opened
acoustic second harmonics are generated at the
tunbounded) surfaces of the crack interface. A
tpical data set s shown in Fig. 10 where the

L= (0 - ociosurc)("fb)lq

200
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E 100}
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10 Graph of acoustic second harmonic amplitude
generated at unbounded surface of crack
interface in compact tension specimen as func-
tion of tensiie load (11b = 0-454 kq)

second harmonic generated at constant fundamen-
tal amplitude is plotted as a function of tension
load. Crack opening occurs at a load corresponding
to the peak of the generated harmonic amplitude.

Stress—-temperature dependence of
sound velocity

The vanation in the temperature dependence of the
sound velocity as a function of stress is the basis of
a new method of characterising residual or applied
stress fields in materials. Consider the thermo-
dvnamic tensions {equation (6)) to be a function of
the Lagrangian strains 7; 2nd temperature 7, i1.c.
t; = 4i{n,T). The differential can be written

- /;-:’dT + C:]kldnkl (Sl)

where 4; = —(3;/5T), is defined as the thermal
stress tensor. For constant stress (i.e. df; = 0) from
equation (51)

4
d[,j =

. “d g )
Aii = "’jkl(._ d;}:‘) = Cl]klakl (32)
N 1
where
dnw o
a§=(dr)‘ (53)

is defined as the thermal strain tensor. For isotropic
solids and cubic crystals

Ulj = 7’6” (54)
where 7 is a scalar strain parameter. For this case
Ly = —Pé‘j (55)

where p is a hvdrostatic pressure. Thus from
equations (32)-(33)
2 T

i R 1)

5T Ky
where At is the compressibility and a' is the
thermal expansion coetficient. From e1juation (56)
it can be inferred that a temperature dependent
stress is induced in the material through the thermal
expansion coefficient. For relatively small changes
in the temperature, the stress p 1s linearly depen-
dent on temperature and from equation (18] is seen
to give rise to a linear variation of sound velocity
with temperature.

Salama and Ling®' considered the effect of stress
on the temperature dependence of the uitrasonic
velocity of alummium and copper alloys by experi-
menially determining the relative change in the
temperature derivative of the natural velocity
(6W/3T) as a function of applied stress 0. A
graphical representation of their results is shown in
Fig. 11. They find that the linear curves of Fig. 11
are represented quite well by the empirical
equatton

3 =l w17t
G -GEIE) -~
C,:T’Ia \3T o T 9
where {(8W/3T), is the temperatare derivative of
sound velocity at zero stress, (¢W/5T), is that at

(57)
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1pplicd stress, o 1s the applied stress (compressional
in their experniments), and K is a proportionality
constant equal to 2-4 x 1077 MPa™! for aluminium
allovs and 2-3 x 107* MPa™' for copper alloys.
These results were confirmed in steel and other
aluminium allcys by Salama et al %243

A preliminary calculation of the temperature
dependence of the sound velocity at zero initial
stress was reported by Salama.*® He also obtained a
comparison between the calculated stress dertvative
of the temperature dependence at zero initial stress
and expenmental values of the stress derivauve.
The results vielded reasonable values for the stress
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ucpcllucu\_c> S T S T O O O R U U RN PR P N O
temperature dependence of ultrasonic velocity in
metallic alloys varies linearly with stress as ob-
served expgrxmuuallv A similar calculation and
conclusion were obtained independently by Chern
et al

More recently, Cantrell™ obtained an analvtical
expression for the constant K by considering the
explicit temperature dependence of the elastic
moduli  via  the  quasiharmonic-anisotropic-
continuum model of crystals.®® The effect of
applied or residual stress was made explicit by
expanding the elastic moduli about the state of zero
stress in a manner analogous to that leading to
equation (18). The generalised proportionahty con-
stant K4, analogous to K in equation (57), for
arbitrary applied stress g,q is found to be

-1 3S..
Ko = (UCT”“N MUUL) [zck.mn( °§;"“)

&Smn
X V|1\ UkUmUU + C.,Hmn(—-ﬂ) )\’ V( .

3T
, 5 xjklmn)S N VUU 1
T \— A RTAL] | S
( gr /TR 20012
C(POW ) s
X — (V - Cl}klmnSmnpq‘\jlvlbllJLI
& J
(38)
where
- 3n A 3
ECapvo 3‘/\” -
T o koo, (39
oT =0 Gy
and
CCaﬁiyu‘voo - —I\BQQZ[: ‘f,v:p /,lv
T =k 3N
m’lf 70
+2 VS 42 ~ 7 R C L
Moo Moo
1
- T (Ccrﬁ -dpomn + Cu,’ij'o,‘amun\-
poW?

X UuU\‘ + 6Caﬁ¢x}mun0L]uUj')’Vm/Vn
i (6N

where kg is Boltzmann’s constant. with

1
valh = . __[2p,WULU
/ zpo“vz [ Po a3
+ (C(‘rﬁmn +CaﬁmuanulJ,\')AVm‘Vn] \()1)
and
Sv9P
"_-)aﬂ,/(o_ aCn‘m
57]”5 7 poH/_ ( Bydmn
+ Cadyémuanqu + 4CaﬁmunyUub'«5)‘Nmi\"n

(62)

The experimental measurements of Salama and Ling
used a longitudinal ultrasonic wave propagating




in a direction perpendicular to a uniformly applied
compressional static stress. Their work was per-
formed on quasi-isotropic polycrystalline solids. For
such an experiment situation the generalised
expression tor K,q. equation (38). reduces to®

K = (\—l\)—l[( Cu+ Choy + Cip2 )( ﬂSP)

SA)
(S2) « (22)s
3T T

n (aC,lrn +5C112)512 _ (%‘:)

S
Ch

(63)

Note that equations (58) and (60) involve the
temperature denvatives of third order elastic con-
stants. From equations (61) and (62) it can be seen
that such derivatives may be written explicitly in
terms of fourth and ffth order elastic constants
when the quasitharmonic-anisotropic-continuum
maodel 15 used. Conversely, the experimental meas-
urements of K provide a method of determining the
fifth order elastic constants of the material in this
approximation provided the fourth order constants
can be determined from other methods. For pure
aluminium and copper single crystals the K con-

H
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; '?““"’“Ml
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s

el

stants calculated for uniaxial siress applied along
[001] and compressional wave propagation along
[100] in these materials are 1-8 x 107> MPa~! for
aluminium and 3:0-x 107" MPa™' for copper.
These theoretical values are in very good
agreement with the experimental values obtained
by Salama and Ling for corresponding alloys of
these elemental metals and suggest that the btiase
metal of a given alloy system dominates the
stress—temperature of the sound velocity in the

alloys.

Low field magnetoacoustics

A novel technique for assessing stresses in ferro-
magnetic materials has been developed by Nam-
kung et al.® The technique is based on the
variation of the sound velocity measured as a
function of low field magnetisation of the material.
The normal crystalline structure of a solid is
gencrally altered when the solid is ferromagneti-
cally ordered. For solids such as iron the cubic uni:
cells are spontanecously deformed into tetragonal
structures with the longer edges aligned along the
magnetisation vector. The magnetisation vectors in
turn are oriented along one of the six equivalent
crystallographic {100) directions. A two dimension-
al representation of the net domain structure for
the case of zero net magnetisation and zero 1mtidi
stress 1s shown at the left in Fig. 12a. The effect of a
residual or applied stress ¢ on the ferromagnetic
state i1s to alter the energy density of a given

3 offect of zero imnial siress. 5 effect of tensile initial stress: ¢ effect of comoressive iminal stress

12 Two dimensional representation of net magnetic domain structure
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domain by the amount™

Ek,mc = K]M(O;;a’; + 0’230% + O’%O':])

- 3ATolaiyi + a3y + advi)2

- 3).T|1(7(£Y|LY3‘/["/: + @3- va

+ asava7y) (e

where K is the first anisotropy constant, A7 the
saturation magnetostriction along the (100) axis.
ATy, that along the (111) axis, and the ais and ;s
are direction cosines of the magnetisation vector
and uniaxial siress axis, respectively, with respect to
the cube axes.

For transdomain stresses the magnetoelastic
energy densities are generally different for adjace-:t
domains and give rise to a net pressure acting on
the domain walls separating them. From equation
(64) the net pressure (i.e. energy density) is
non-zero only for those adjacznt domains whose
magnetisation vectors are at right angles to each
other (i.e. 90° domain walls). Under tension the 90°
domain wall motion is such that the net volume of
domains oriented along the uniaxial stress axis is
increased as indicated by the domain representation
at the left of Fig. 12b. Under compression the
domains orient close to a plane perpendicular to the
stress axis as shown at the left of Fig. 12¢. In both
cases the etfect of stress is to decrease the area of
90° walls. The stress induced 90° wall motion,
however, is generally restricted by the interaction
between the walls and various lattice defects.
Hence. complete domain alignment under stress
does not generally occur in the case of impure
ferromagnetic materials like steels.

Whea an external magnetic field is appued to the
ferromagnetic solid. domains with low Zeeman
energy become seed domains and their volume
begins to expand. In this case both 180° and 90°
wall motion occurs such that as the applied field
increases more domains become oriented along the
applied ficld direction. The case for zero initial
stress in the matenal i< illustrated in Fig. 12a. The
relative change 1n net domain structure as a
function of applied magnetic field is dependent on
the domain structure imtially induced by the stress
at zero magnetic field condittons as illustrated in

AL(H)

13 Predicted changes in sound velocity as function
of magnetic field strength for various states of
initial stress
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Fig. 12b and ¢. The applied magnetic field strength
ts shown to increase from zero at the left to some
maximum value indicated at the right in the figure.

The effect of net domain orientation on the
sound velocity in the ferromagnetic material is
governed by the relative amount of 90° domain
walls avatlable in the maternial at the ume of the
velocity measurement. The elastic modulus E of
ferromagnetic materials is given by

loj

e (:5))
Eci+5m<

where o is the applied stress, o, the linear elastic
strain, and én. the magnetoelastic strain. The
magnetoelastic strain is generally assumed to be
proportional to the total area of 90° domain walls.
From equation (65) and Fig. 12, the expected
functional change in sound velocity as a function of
applied magnetic field strength A for various states
of initial stress is qualitatively shown in Fig. 13. It is
of tnterest to note that tensile and compressive
stresses give rise 1o initial slopes of opposirte
polarity and thus provide a means of testing the
sign of the initial stress.
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Namkung er al.™ 273 have performed an exten-
*sive series of natural velocity measurements in
various steel samples using the palsed phase-locked
loop technique.™ Their resuits™ for AISI 1020 stez
are shown in Fig. 14, The curves are in nominal
agreement with the model curves in Fig. 13. Their
results *7* for railroad steel, however, show some
deviation from the model. Specificaily, the curves at
tension indicate a greater modulus or velocity
change than the curve at zero stress. In addition,
the unstressed curve is relatively dat until a rather
large magnetisation is induced in the sample.
Namkung ef al.”® explain that the deviation results
from the high degree of local lattice strain that
significantly impedes the motion of 90° walls but has
little influence on the 180° wall motion. While the
180° wall motion contributes to the magnetisation
of the material, only the 90° wall motion affects the
elastic modulus and velocity changes. The unstres-
sed curve is thus expected to remain relatively flat
untl high field strengths are achieved. The velocity
increase at higher fields is caused mainly by domain
rotation and in part by 90° wall motion. The effect
of initial tension is to aid the magnetic field in
moving 90° walls at a somewhat reduced feid
strength. This results in an increasingly upward shift
of the tension curves as the initial tension increases.

Conclusions

It is clear that non-linear acoustic methods can be
used to obtain useful and in some cases unique
information about materials. Although the same
basic experimental acoustic techniques are applic-
able to most materials., the meaning and iater-
pretatton of the experimental results are lumited by
the validity of the acoustic models used to describe
the material. Most measurements of non-linear
thermoelastic properties have been performed on
materials having a relatively simple, well defined.
single phase structure in which elastic wave behav-
lour is understood from the generalised wave
equations for solids of arbitrary crystalline symmet-
rv. Indeed, elastic constant data (particularly the

hugher order elastic constants) have been reported

mostly on relatively defect free single crystals.
Multiphase and composite materials, although more
compiex structurally, have generallv been treated
acoustically as quasi-isotropic or at best mildly
textured matertals without regard to their micro-
structural  composition.  Although acoustic wave
propagation can in principie be treated as taking
place 1 such materials with effective elastic moduli
that retlect whatever degree of symmetry the
researcher feels necessary to consider, the compo-
sitonal character of complex materials in itself is
important and deserves specific consideration.

An attempt has been made in this review to
redress the general lack of compositional consider-

ation bv emphasising the interrelationship of
material composition. matenal properties, and
acoustic measurements. Although the acoustic

models presented here in terms of volume fraction
of material constituents are in some cases simplistic,
the essential features predicted by the models are

borne out in experiment. The models, indeed, do
provide a more comprehensive understanding of
the influence of material composition on acoustic
properties and. hopefully, will serve as catalysts for
the development of better., more comprehensive.
models of compositional influence on wave behav-
wur. The success of many non-destructive
evaluation efforts and the evolution of new non-
destructive methodologies rests in large part on the
ability to model! comprehensively such microstruc-
tural influences on acoustic properties. The con-
sideration of compositional influence, including
magnetic or other domain effects where appro-
priate, and the linking of acoustic non-linearity to
the basic lattice dynamical behaviour of materials
are necessary to provide the proper science base for
advancement and innovation in non-destructively
assessing, characterising, and testing the thermo-
elastic and mechanical properties of materials.
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APPENDIX 1

Dyuamic moduli and elastic constants

The mechanical properties of isotropic solids are
usuaily obtained from static or low frequency
dynamic testing of specimens having a specified
geometrical shape. Here the rclationships between
the elastic moduli measured in such tests and the

elastic constants

(specifically Lamé constants)

obtained from ultrasonic measurements of the same
maternal are summarised. The relationship between
the Lamé constants and the Brugger secoud order
elastic constants, generally used in the text, is given
in equation (20).
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lay) for an isotropic solid in teims of the Lamé

constants A and w« can be written in the form
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where 815 the dilaton or change in material volume
denned by

1, = 2uE, + AGO,

(67)

and & are the hinear strains defined in terms of the
displacement gradients (ui/a;) as

1 /3y, )

";7K“

Equation (66) is obtained directly from equations
(5). (7), and (20) where oanly the linear terms are
retained in the final expression. The u constant is
often referred to as the shear or rigidity modulus
and is given the symbol G by many authors. The
Lamé constants can be obtained from meas-
urements of the compressional and shear bulk wave
velocities of the unstressed (1.e. 0 = 0) sample as
indicated by equations (23).

The bulk modulus & is an important engineering
modulus defined from a static measurement of the
change in the material volume resulting from an
applied hydrostatic pressure p as

6 = &1 + €33+ £33

(68)

1.
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(69)
The rnight-hand side of equation (69) is obtained by
writing g,; = —-pd,, for the hvdrostatic pressure and
using this expression in equation (66). As indicated
i equation (69), the bulk modulus can also be
calcutated from knowledge of the Lamé constants
determined  from ultrasonic bulk wave meas-
urements.

Consider now a cylindrical. isotropic solid and
detorm the sofid staticaliv along the cylindrical axis,
which is defined as the x or l-axis. The surface of
the cvlinder is stress free and so from equation (66)

Jy = 2#511 + A0
) = 2uray + A0 SO 0}
0 = 2uey ~ AD

Young's modulus £ is defined as the ratio of the
applied axial stress gy, to the longttudinal strain &,
and from equation (70)

Oy w34+ 2u) -
E:_._:_._.__\' (/l)
&y AT U
Although equation (71) is Jdetined from static

conditions. Young's modulus can be obtained from
measurements of the velocity ve of low frequency
longitudinal waves propagating along the cylinder
axis as

E = pove (72)
lt 1s important to emphasise that the velocity vg
measured under the above conditions 1s not equal
to the veloaities measured in unbounded media. as

\A‘&.ll i \-kiULH.AUll
can be considered effectively unbounded when the
ultrasonic frequencies are sufficiently large that the
acoustic wavelength is small compared with the
dimensions of the sample.

Poisson's ratio v is also defined from static
conditiors as the ratio of the lateral stramn to the
longitudinal strain and is obtained from equation
(70) as

Gt A e b

[R5 A X
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It is clear from the above relationships that the

v= -

various moduli are intrinsically related. For
example, it is easily shown that
Ev 2v
- = Y (74)
Q+v(1-2vy 1-2
and
__E (75)
mn T+ e e )
APPENDIX 2

Non-linearity parameters of

multiphase alloys

A mathematical model was developed by Cantrell
er al®® to describe the eflective non-linearity
paramecters of multiphase alloys. The model 1s
based on the law of mixtures for the non-linearity
parameter and is reproduced here to underscore the
essential features and assumptions not brought out
in the text.

Consider a rotation of the Cartesian reference
frame such that the direction of acoustic wave
propagation is always along the x or l-axis of the
rotated coordinate svstem. Then perform a second
orthogonal transformation on the system which
diagonalis.s the non-linear equations of motion,
equation (41), such that the equauons are deccup-
led into three independent equations corresponding
to the three wave polarisation directions. Perfor
ming these same ‘ransformations on the general
stress—strain relationship of equation (3} and keep-
ing only terms to first order in the non-linearity lead
to the relationship between the transformed stress
Onq and the transformed displacement gradients
(5u;/3ay) given byv*!' (no sum on j)

(76)

where uf and &% ove linear combinations of second
and third order elastic constants, a; is the ja-
grangian coordinate along the x or l-axis, and
= 1.2.3 is a moue index representing the appro-
priate polarisation direction. Consideration
restricted to longitudinal waves (j = 1) in quasi-
isotropic solids (i.e. solids consisting of randor: v
oriented grains). Thus the superscripts an:

scripts are dropped and the longitudinal stresses a
199
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written
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where Cy is the longitudinal second order elastic
constant written 1n Voigt notation and s the
acoustic  non-linearity  parameter. Soivang  for
(SwiGa) in terms of o we obtain

(Eu‘ 1 1 p -
——] =g+ o
2CY,

Sa C‘“

Consider now the solid to consist of any number of
phases N. Assume that for a gitven phase [, the
grain orientations are perfectly randor (no texture)
and that the number such grains contained within a
path length of sound is suthiciently large to provide
a good statistical sampling. To the extent that such
coniitions are marntained the value of the effective
non-linearity parameter is expected to be indepen-
dent of grain size.

In order to obtain the appropriate mixing law for
P detine Vy and py to be the initial (unperturbed)
volume and mass density, respectively, of the solid.
The locat transformauon from the imtal state to
the detormed state V' oor p is defined through the
Jacovian

(78}

Ll (79)

",, £
The velume at anv tme 1s considered to consist of
a number .V ot constituent phases ¢ such that
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!
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Then fiom equatnons (79) and (SU)
1 1
J oo ST \Jl‘,~\1r (81)

\‘1' ‘O

where J; = (VY)Y 1s the Jacobian for phase i and
o= (L?,’V.,) is the volume fraction of ph ase 1.
Expanding the Jacobian in  terms of the
displacement gradients (Ju/3a;) = w; and keeping
the hnear terms (small strains), then {Einstein
summation)

J =1+ W x (8:)

Substututing equation (82) into equation (81) gives

Hek = _ilimm/ (83)
Consider now the quasi-isotropic solid and assume
that for a given phase @ the grain orientatons are
suthiciently random and of sufficiently large number
that each phase responds individually as an 1sotro-
pic structure. Under such conditions, equation (83)
inay be written

(84)

in the notation of equation (77). From equations
(78) and {79), together with the assumption of local
1991 Vol
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equality of stresses, we obtain

1 5 . - A
_:1_ J = [_)' g- = (L _l._j”'g
(—ll 2 (—_ll Y C’I‘n ‘
KK‘ /31 S 5=
+{ 2 f) - (83)
V2(Gh)”
Equating like powers of 0. we obtain
1 N 1
—_— ), —f 86
Cu i Cnf ( )
and
Ch 573 (87)
p=cn ~(Ch)"

In general, a non-linear relationship is found
between the effective non-linearity parameter 3 and
the volume fraction f; of individual phases because
of the appearance of C3, in equation (87). It is of
interest to point out that for liquid media the
second order elastic constants Cu =0 and
Cy; = Cp2. In this case ()7 can be identified
with the liquid state compressibilities and equation
(S7) becomes idenucal to the results of Apfel™ for
immiscible liquid mixtures.

Assume now that the solid consists of any
number of distinct second phase precipitates and
that the relative volume fractions of constituent
second phase precipitates for a given alloy are
constant - onlv the total volume fraction of second
phase precipitates 15 constdered to change. Hence,
the effective non-linearity parameter f, and the
effective {Cy;), of the second phase precipitates
taken collectively remain unchanged. The inva-
riance of the relative volume fractions of secon:
phase precinitates must necessarily come at the
expense of the solid solution constituents. It is
assumed that the deptction of the constituents of
sohd sotution occurs linearly as

=N -ef, S (ss

where f is the present volume fraction of solid
solution constituent 1. f,, is the total volume fraction
of second phase precipitates, fT is the volume
fraction of constituent ¢ in pure solid solution (i.e.
when f, = 0), and ¢, is the "depletion’ constant for
constituent /.

From the above
be written

considerations equation (86) can

I T . 1 f
Cuy (Ch I (Cip P
where in equation (89) and in all following equa-
tions the summation is taken over solid solution
constituents o.ly, the superscript ¢ refers to sohid
solution constituents, and the subscript p refers to
the second phase constituents taken collectively. It
has been assumed, somewhat tenuously, in wnting
equation (8%) that the solid .olution constituents
behave as an immiscible mixture. While this
assumption is not strictly true, the summation term
in the equation is. none the less, representative of

(89)
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tons, (83) and (89)
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where
l N
(»(1 ‘(Cl‘)l

15 the solid solution contribution.

Similarly, from equations (87), (88), and (90) it s
found that the effective non-linearity parameter f
of the solid in terms of total volume fraction of
second phase precipitates f, is given by

> |r ) [ CH < CH J_z
3=11+ fl —— — LT 6
7 l’ -p('(C“)p ‘ ( ‘H)x

Pf (r CH 32 ~ C[I - ]

B+ 7} - .S.J e /3181
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(92)
where
R
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solution. For tvpical values of the C;s and fs the
coefficients of the terms containing f, in equation
(92) are esumated to be of order unity. Expanding
equation (92) in a power series for small values of
£, and keeping only the linear terms. gives

[ T S P rtiiie o A . —

B = Bl + Rf,) (94)
where the constant
ko3[ G o B, ]
LG B(CT1)i
CH / ,BDC“ A P,
- 2 - = 95)
CRASINGGBN, ‘

Equation (95) is a linear approximation to equation
(92). A survey of typical values of (Cy); and B
indicates that equation (95) should be accurate for
most materials to within typical experimental
uncertainty for volume fractions as high as approxi-
mately 10%.
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ELASTIC STRENGTH OF PARTICLE AND FIBER REINFORCED
METAL-MATRIX COMPOSITES

B. GRELSSON and K. SALAMA

Department of Mechanical Engineering, University of Houston
Houston, Texas 77004

ABSTRACT

Conventionally, metal matrix composites (MMC) are reinforced with either particles or fibers.
Recently, a new class of composites where a mixture of particles and fibers is used as
reinforcement has emerged. The particles improve the isotropic mechanical and thermal
properties, whereas the fibers introduce directionally favorable properties for specific
applicatious of the material. The elastic properties of three different matrix alloys containing 6%
alumina fibers and varying alumina particle volume fractions of 9, 13, and 17% have been
determined using ultrasonic velocity measurements. The results show that the elastic moduli
increase with the particle content and the composites have the highest elastic stiffness in the
directions of the fiber plane. A model is developed to explain the observed elastic moduli of this
type of composites. The model uses results of the theories by Ledbetter and Datta for spherical
inclusions and Hashin and Rosen for aligned fibers. Furthermore, it includes an averaging
procedure suggested by Christensen and Waals. The agreement between measured and
calculated elastic moduli is found to be good. In a second series of measurements, the elastic
moduli in two sets of extruded MMCs and one set of pressed MMCs are determined. These
composites are reinforced with silicon carbide particles. Their elastic moduli as well as their
elastic anisotropics are explair -d using the theories discussed earlier.

INTRODUCTION

In order to increase structural efficiencies in modern design, materials possessing high stiffness
and high srrength are required. One class of engineering matenals fulfilling these requirements
are metal-uiatrix composites (MMCs). In these composites, properties of the material can be
tailored by the appropriate selection of matrix and reinfercement materials and by their mutual
arrangement in order to meet specific needs of the designed component. The matrix and the
rcinforcement are to be selected so that they combine their different mechanical and elastic
properties in a synergistic way. Also, microstructures resulting from different fabrication
processes are found to influence properties of these composites and provide valuable
information for their further development.

Many models have been developed to determine the effective elastic moduli of composite
materials. Most of these models deal with reinforcement in the form of spherical particles
(Ledbetter and Datta, 1986, Budiansky, 1965), ellipsoidal inclusions (Eshelby, 1957, Chow,
1677) or infinitely Inng fibers (Hashin and Rosen, 1964, Hill, 1964). Ledbetter and Datta used
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a multiple scattering theory to predict the elastic behavior of composites with a
nonhomogeneous particle distribution. In the model they assume that the particles together with
the matrix form an enriched "sea” that surrounds "islands" of pure matrix material. These non-
spherical islands are aligned and produce anisotropy. On the other hand, in order to determine
the effective elastic properties of fiber reinforced materials, Hashin and Rosen introduced the
composite cylinders model. In this model, the composite is considered to be comprised of
infinitely long circular cylinders embedded in a continuous matrix phase. Each fiber has a
radius, a, which is surrounded by an annulus of matrix material of radius b, and the ratio a/b is
considered to be constant for all composite cylinders. In order to obtain a volume filling
configuration, the absolute size of the cylinders must vary considerably.

In some industrial applications composites used are of a more complex nature, where a mixture
of particles and fibers is used as a second phase. To our knowledge no models that describe the
elastic properties of these composites are available. The present study is concerned with
composites reinforced with low values of both particles and fibers, and hence, no interaction
between fibers and particles is assumed. In modeling these composites, we first consider the
matrix material and the particles to form an effective matrix. Since the particles are
homogeneously distributed in the metal, the effective matrix is considered to be homogeneous
(Ledbetter and Datta, 1986). The effective matrix is then considered to be reinforced with fibers
which are randomly oriented in one plane. The influence of the fibers on the elastic moduli of
the composites is then determined first by using the composite cylinders model for an aligned .
fiber system (Hashin and Rosen, 1964) and second by preforming a geometric average
procedure (Christensen and Waals, 1972) which takes care of the 2-dimensionally random
orientation of the fibers. The results obtained show a good agreement between calculations and
measurements where details are given elsewhere (Grelsson and Salama, 1990).

EXPERIMENTAL

The metal matrix composites used in this investigation consist of aluminum alloys as the matrix
material and either SiC-particles or alumina fibers and particles as the reinforcement. The
composites based on Al 7064 and Al 8091 were obtained as extruded rods of 25 mm in
diameter. The specimens based on Al 6061 were received as pressed plates of the dimension 6 x
25 x 60 mm. The alumina reinforced specimens were manufactured by squeeze casting and
received as bars of the dimension i2 x 12 x 50 mm. The volume percentage of reinforcement in
the different sets of MMCs is shown in Table 1. Specimens are cut from the as-received

Table 1. Manufacturing method, matrix alloy and volume fraction of
reinforcement of the MMCs investigated.

Manufacturing method Matrix alloy and volume fraction
of reinforcement
Extruded rods Al7064 + 0% SiC

Al 7064 + 15% SiC
Al 7064 + 20% SiC
Al 8091 + 0% SiC
Al 8091 + 10% SiC
Al 8091 + 15% SiC

Pressed plates Al 6061 + 0% SiC
Al 6061 + 25% SiC
Al 6061 + 40% SiC

Squecze cast bars Al132 +23% AlLO3
A1l +19% AlhO3
A1100 + 15% Al,O
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Fig. 1. Specimen geometry and designated coordinate systems.

composites and the faces of each specimen are machined flat and parallel to within £25-um. The
coordinate systems are chosen such that in extrud=d samples the X)- and Xp-axes are
perpendicular to the extrusion direction. In the pressed specimens the Xi- and X3-axes are in
the plate perpendicular to each other and the X3-axis is oriented parallel to the compression
direction. In the squeeze cast samples the X1- and Xp-directions are in the fiber rich plane at
right angles to each other and the X3-direction is normal to the fiber rich plane. Fig. 1 displays
schematically the cut of the specimens, the manufacturing parameters, and the orientation of the
coordinate systems. For all specimens the microstructure is examined in the three orthogonal
planes in terms of particle size distribution and area fraction covered by the reinforcement.
Measurements of ultrasonic velocitie: were performed using the pulse-echo-overlap method
with is described in details elsewhere (Salama and Ling, 1980). X- and Y-cut transducers of 10
and 2.25 MHz were used for the generation of the longitudinal and transverse waves,
respectively. The elastic constant are calculated using the relationship Cjj = p Vijz where p is the
mass density.

RESULTS AND DISCUSSIONS
Ex M
The measured Young's and shear moduli along the three principal axes in the Al 7064 MMCs
are listed in Table 2 as a function of the volume fraction of SiC. The same moduli for the Al
8091 MMC:s are shown in Table 3. Also included in these tables are the elastic moduli predicted

using a model in which the composites are assumed to consist of an aluminum matrix and

Table 2. Calculated and measured Young's and shear moduli of the Al 7064
MMC specimens. Moduli are shown in units of [GPa].

MMC Al 7064 + 15% SiC Al 7064 + 15% SiC
Modulus calc. meas. cale. meas.
E11 90.0 90.3 96.8 99.9
Eyz 90.0 90.5 96.8 97.2
E3s 90.9 91.4 98.1 100.5
G2 34.0 349 36.6 38.0
Gi13 34.1 35.6 36.8 39.6
Gas 34.1 35.3 36.8 38.4




Table 3. Calculated and measured Young's and shear moduli of the Al 8091
MMC specimens. Moduli are shown in units of [GPa).

MMC Al 8091 + 10% SiC 1 1+ 15% Si
Modulus calc. mcas. calc. meas.
Ejy 92.6 91.3 99.3 96.8
E22 92.6 91.8 99.3 96.7
E3s 93.2 92.6 100.2 98.3
Gi2 35.7 35.8 38.4 38.1
Gis 35.8 36.2 38.5 38.7
Gas 35.8 36.1 38.5 38.5

homogeneously distributed particles of spherical shape. The particles, however, are arranged so
that they form unidirectional fibers of particle-rich and particle-free aluminum. This arrangement
is chosen to model the microstructure observed in the extruded composites containing spherical
particles where the particles cluster together and form areas with high particle concentration and
islands of pure matrix material. Due to the extrusion, these areas align in a rod-like shape along
the extrusion direction.

From Table 2 and Table 3 one can see that the anisotropy for predicted Young's moduli between
the extrusion direction and the two transverse directions is of the same order (~ 1%) as that of
the measured moduli. The anisotropy predicted for the shear moduli is negligible and the
measured shear moduli is within the experimental error. However, there is a tendency in all
measurements indicating that the shear stffness is lower in the X1X2-plane than in the other two
planes. This agrees with the difference observed in the calculations of Young's moduli where
the extrusion direction is found to be stiffer than the two other directions.

Pressed MMCs

The measured Young's and shear moduli along the principal axes in the Al 6061 MMCs
together with the elastic moduli predicted by the model assuming dilute concentrations of
homogeneously distributed particles of spherical shape are plotted in Figs. 2 and 3 as a function
of the volume fraction of SiC-particles. The plots clearly shows that the model predicts the
overall increase of the elastic moduli relatively well for specimens containing 25% SiC.
However, it fails for the 40% SiC-reinforced specimen. In this specimen, the values predicted
by the model are much smaller than the measured ones. The disagreement between predicted
and measured moduli is due to the fact that the model assumes a dilute concentration of
particles. The plots in Figs. 2 and 3 also indicate that the increase of the moduli deviates from a
linear relationship towards higher values of volume fractions of reinforcement. This behavior
may be attributed to particle interactions when the mean-free-pathlength between them is
reduced as their volume fraction is increased.

The measured elastic anisotropies found between the directions in the plate and that normal to
the plate can be explained by the metallurgical investigations where it is observed that the area of
the particles in the compression direction is slightly larger in the compression direction than that
in the plane of the plate. This suggests that the particles have the shape of spheroids and that
they tend to align during the compression such that their c-axes coincide with the compression
direction. The alignment of the particles results in a higher elastic stiffness in the plane of the
plate which agrees with the measured elastic properties. The metallurgical investigations also
show that the aspect ratio is only slightly less than one. According to calculations by Ledbetter
and Datta, such a low aspect ratio does not result in elastic anisotropies as large as they are
found in the investigated MMCs which are approximately 5%. Calculatons assuming an aspect
rat(i:o of 0.8 predict an anisotropy of the order of 1% for the Al 6061 matrix reinforced with 25%
SiC.
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Table 4. Calculated and measurea Young's and shear moduli of the squeeze cast MMC
specimens. Moduli are shown in units of [GPa).

MMC AL 123 + 23% A1LO3 AL13 + 19% AlO3 AL1100 + 15% Al

Modulus calc. meas. calc. meas. calc. meas.
E11 102.2 101.9 94.9 97.1 88.0 86.4
E22 102.2 102.0 949 97.2 88.0 88.2
Ei3s 99.6 100.7 92.1 94.3 85.0 83.9
Gi12 38.8 38.4 35.9 36.9 33.5 32.8
Gi13 37.4 378 344 35.2 31.9 31.0
Ga3 374 38.2 344 35.8 31.9 311

Measurements in the unreinforced material have shown that the texture present influences the
elastic properties significantly. Here, the texture accounts for a 4% higher Young's modulus in
the compression direction. Thus, it seems reasonable to consider that the texture is responsible
for the major part of the anisotropy observed in the reinforced specimens.

Squeeze Cast MMCs

In the squeeze cast specimens, the alumina fibers are randomly oriented in one plane whereas
the alumina particles are also homogeneously distributed. The elastic moduli along the principal
axes of the composites are predicted using a model which assumes the composites to be
comprised of an effective matrix consisting of the pure aluminum and the homogeneously
particles. The effective matrix is then considered to be reinforced with planar-randomly
distributed fibers. The predicted as well as the measured elastic moduli are listed in Table 4. The
results show that the increase in the elastic moduli due to the reinforcement is reasonably well
predicted by the model. A more crucial test of the applicability of this model is its ability to
predict the elastic anisotropy between the directions in the fiber-rich plane and the direction
normal to the plane. Since the fiber content is the same for all three specimens, the anisotropy is
expected to be more pronounced the lower the stiffness of the effective matrix i.e. the lower the
concentration of alumina particles is. This behavior is experimentally observed as shown by the
values of the Young's and shear moduli in Table 4. The difference in the moduli between the in-
plane directions and the normal direction is less pronounced the higher the stiffness of the
effective matrix becomes. Quantitatively, the measured anisotropies are well predicted by the
model. The model, however, assumes that there is no interaction between particles and fibers
and therefore it is more suitable for composites with low particle content.
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Elastic Nonlinearity in Metal-Matrix Composites

H. Mohrbacher* and K. Salama

Department of Mechanical Engineering. University of Houston, Houston, TX 77204, USA

Abstract. Parameters characterizing the elastic nonlinearity in metal-matrix composites
are studied. The composites consist of the aluminum alloys 8091 or 7064 containing
silicon carbide particles up to 20% volume fraction. Two different uitrasonic measure-
ments. namely the acoustocelastic effect and the harmonic generation, are used for the
determination of acoustic nonlinearity parameters. Their dependence on the content ol
SiC in the composite is investigated. The values of the nonlinearity parameter are found
to decrease with increasing volume fraction of SiC-particles. The changes are explained
in terms of the effects of SiC-particles on the second and third order clastic constants of
the composites.

Introduction

Elastic nonlinearity is responsible for the deviation of g - material’s stress-strain
response trom the linear retationship represented by the isothermal form of the
generalized Hooke's law. This law can be written as

ai = Cyngn. th

where o and &y are the stress and strain tensors respectively. and Cyy is the
fourth order tensor which represents the second order clastic constants, The
nonlincar clastic behavior of materials can be determined from measurements
of the stress dependance of ultrasonic velocities as well as the distortion of
ultrasonic waves by the gencration of higher harmonics. Consequently, these
cffects can be used to characterize a material’s elastic nonlinearity nondestrug-
tively.

In recent studics, the influence of microstructure on the acoustic nonlinears
ity parametcer has been investigated in aluminum alloys. Razvi et al, [ 1} found a
lincar correlation between the acoustic nonlinearity parameter and the volume
fraction of second phase precipitates in some  heat treatable aluminum alloys,
Another correlation was found by Yost ¢t al. |2] between the hardness and the

* Permuncent address: Frounhofer Institut fie zerstorungstreie Prifvertuhren (12P), Universy
tiitsgeb, 37, W-6600 Saarbrilcken. Federal Republic of Germany
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acoustic nonlinearity parameter in maraging steel. These studies directed the
attention to similar investigations ot the nonlinearity parameter in two phase
materials such as metal-matrix composites (MMC). These composites consist
of a metallic matrix and a metallic or ceramic reinforcement which can be
presented in the form of particles. short or long fibers. The properties of the
composite depend on those of the constituent phases as well as on the interac-
tion between the phases in the composite. The interaction is determined by the
geometrical arrangement of the reinforcement as well as the bond strength
between the two phases. In order to verify the desired bulk properties. the
nondestructive characterization of lincar and nonlinear clastic behavior of such
composites is essential.

In this investigation. nonlinear elastic effects were determinéd as a function
of the SiC-particle content in the aluminum alloys 8091 and 7064 by measuning
the stress dependance of the ultrasonic velocity and the harmonic distortion of
ultrasonic waves. These measurements yield the effective second and third
order clastic constants as well as the effective acoustic nonlinearity parameter
of the composite.

Elastic Nonlinearity in Solids

All elastic propertics of a solid can be derived from the elastic energy represen-
tation of that solid. In general. the strain energy of deformation per unit vol-
ume. P, can be expanded as a power series in the elastic strain, €. as

| |

. — A — > A + — ‘. \J Al ) — ’

I(g) = by + C,ih,‘j + 3 C,jub.jlzu + 6 (uklmn*'l_n"‘-klbmn e (2)
- ~ .

According to Brugger [3], d is the strain energy per unit volume in the unde-
formed state and the coctficients €, in the expansion are the elastic constants.
In a linear elastic solid there are no contributions to the clastic energy from
terms higher than the power two in £. All materials. however, have anharmonic
clastic potential which is determined by the ratio of the third and the second
order contributions to the elastic energy.

In an isotropic solid, the strain encrgy density depends only on the invari-
ants 1y, />, and /5 of the strain tensor since the elastic constants are invariant
under arbitrary rotations. ' Murnaghan [4] writes &b for an isotropic material as

b=y + ol + - 2ul. + Iy = 2mhils + nhh. (3}

)\+?./.le [+ 2m

! 3
where o is the stress, A and g are the second order Lamé constants, and 4, m.
and n are the third order clastic constants in Murnaghan notation. The second
and third order clastic constants can be conveniently obtained from ultrasonic
measurements. The second order Lamé constants are divectly related to ultras
sonic velocitics as

p=pVioand A= Vi = 2V, h
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where p is the density and Vs and Vy are the shear and the longitudinal wave
velocities, respectively. _

A formalism which allows the evaluation of the third order clastic constants
. m. and n from the strain dependance of the ultrasonic velocity was developed
by Hughes and Kelly [3]. In an uniaxially strained specimen. the velocities of
ultrasonic waves depend lincarly on the clastic strain® Commonly, three wave
modes are used: the two linearly polarized shear waves and the longitudinal
wave, having polarization and propagation dircctions as indicated in Fig. 1. The
slopes of these linear relationships normalized with respect to the velogities in
the strain-free specimen are called acoustoelastic constants and related to the
third order clastic constants L.om, and n as

A= edVa/vh Y AV VY dbety l .
= SR e =]+ i), 30
! 1 - 2 r e l -+ u( de t de ) t ¢
N v (lV:l/ \"‘3" + ] d"'3|/"“_\'| . <
me= s (I +0  de | +v e - l)' (5t}
v kl V‘|/ "'Q‘ LI V‘\/V“'\ -
- whn _dbsivn .
"TTE e ( de de b= ) 13

where V; are the ultrasonic velocities with propagation and polarization diree-
tions as indicated in-Fig. 1. the superscript 0 denotes the velocity at zero strain,
and v is the Poisson’s ratio. '
Another method for the determination of the nonlincar elastic ettect is the
gencration of higher harmonics. An originally sinusoidal sound wave gets dis-
torted while propagating through a nonlinear material. The anharmonicity of
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the interatomic potential function leads to the nonlinear wave cquation which
can be written for a longitudinal wave propagating in an isotropic solid as 6]

P u au ' 2+ dmi au > u
)5 = A+ 2u) 5 = 3 ——— 1 — (A + 2u) s, {6
Par ( #) ax- A+ 2uldax TS )

where « s the displacement and ¢ and x are the time and space variables.
respectively. This nonlinear wave equation differs from the lincar wave equa-
tion by the perturbation term on the right hand side which is determined by the
ratio of the third- and second-order clastic constants. The term in brackets in
Eq. 6 is called the acoustic nonlincarity parameter 8. and is related to these
clastic constants as

=B =3+ (2 + 4N+ 2u). (N

It is interesting to see from lig. 6 that the condition for lincar longitudinal wave
cquation is not the third-order clastic constants to be equal to zero, but the ratio
(2 + Inn)/ (N + 2u) 18 cqual to -3,

According to Thurston and Shapiro (6], the solution of this equation for «
can be obtained. using u perturbation technique, as

= Ay sinfwr — kx) + AscosQRat — ke + L L. (8)

Here. w is the frequency of the ultrasonic wave. 4 is the wave number, and A is
the amplitude of the fundamental wave. The generatgd second hirmonic will
have an amplitude A-. and twice the fundamenta! {frequency. The amplitude of
the second harmonic is related to the square of the tundamental amplitude as

1 "
Ay = 3 BATkx, EH

where x is the propagation distance of the wave.

In multi phase materials such as metal-matrix composites., the censtituents
may have very ditferent elastic and mechanical properties which result i the
effective macroscopic propertics of the composite. In general, these effective
propertics are not ¢xpected to follow a linear law of mixture. Cantrell et al. |7]
showed that the ctfective nonlincarity parameter of multi phase materials is a
nonlincar function of the volume fraction of the participating phases. Further-
more, diffcrent phases interact with each other at the intertaces where very
high residual stresses arc likely to be present. These are cither compatibility
stresses due to differences in the clastic-plastic properties of the constituent
phases or thermal stresses arising from ditferences in the coetticients of thermal
expansion, The lattice distortion in these phases, due to the presence of resid-
ual stresses, will additionully contribute to the effective acoustic nonlincanty
parameter of the composite.,
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Table 1. Chemicul composition of the investigated aluminum alloss i wi, 47

Alloving clements

Alloy St Fe Cu Mg /r 1a /n Cr Co

AL7064 005 010 2,60 230 0.20 _ 740 02 02
AlSOY1 002 001 190 080 020 270 -— — —

Experimental
Specimens

In the present investigation. two metal-matrix composites with matrices of the
heat treatable aluminum alloys Al-8091 and Al-7064 are examined. Their chemi-
cal compositions are shown in Table 1. The aluminum matrices are reinforced
with globular silicon carbide (SiC) particles up 1o 209% volume fraction of sizes
ranging between 1 and S um. The specimens were received us extruded rods of
1 inch in diameter. Due to the manutacturing process. the particles are aligned
along the extrusion direction, while in the plane perpendicular to the extrusion
dircction the particles are randomly distributed. Micrographs of these two
planes are shown in Fig. 2 for the composite consisting of AI-8091 and 109 SiC-
particles. For harmonic generation measurements, the specimens are cut to a
length of two inches. Opposite taces are machined paratle] and then polished to
optical flatness. After measuring the acoustic nonlinearity parameter. the sides
of the specimens were milled to a square shaped cross section in order to
measure acoustoelastic constants. -

Htrasonic Velocity Measurements

In order to determine the third order clastic constants, the strain dependance of
the ultrasonic velocity needs to be measured. This cttect is typically in the
order of one part in 10 and requires very precisce tine of flight measurements.
The system used in this investigation utilizes the pulse-echo overlap method tor
the determination of the time of flight as described in (8], In Fig. 3. a block
diagram ot the system components is shown. Using this system, an absolute
time resolution of 200 ps can be measured. During the time of flight measure-
ments, compressive strains are applied to the specimen along the extrusion
direction and are varied systematically in the clastic regime. The time of flight
data are acquired by a computer and ultrasonic velocities are calculated as a
function of the applied strain. Corrections are made for the change in the lateral
dimension of the strained specimen which is due to the Poisson’s expansion.
The lincar relationship between the ultrasonic velocity and the elastic strain is
then evaluated by a least squares fit algorithm, The slope of the curve is nor-
malized with respect to the velocity of the unstrained specimen and is called the
acoustoclastic constant.-The acoustoclastic constants of the three wave modes
shown in Fig. | are used in the calculation of the third order clastic constants
using Egs. §.
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Fig. 2. Particie distribution in extruded MMC specimens: a extrusion direction, b transverse direc-
tion

Absolute Amplitude Measurements

For the direct measurements of the acoustic nonlinearity parameter the abso-
lute amplitudes of the fundamental and the second harmonic waves are deter-
mined. This is achieved using a capacitive detector system which is described
in detail elscwhere |9]. The block diagram in Fig. 4 shows the experimentat
sctup schematically. For the excitation of' the fundamental longitudinal wave.,
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an electric 10 MHz signal is applied to a narrow band undamped lithium niobate
transducer which is bonded to the surface of the specimen. The longitudinal
wave which has a bandwidth of 200 kHz and a duration of 5 us is propagated
along the extrusion direction. The superposition of the fundamental wave and
its second harmonic is picked up by the capacitive transducer on the opposite
surtace. During the measurements, the received signal 1s amplified and the
amplitudes of its frequency components are analvzed. These measurements are
repeated for different driving amplitudes. The amplitude of the second har-
monic is plotted vs. the square of the fundamental amplitude in Fig. 5 for two of
the specimens examined in this investigation. The linear relationship between
the two quantities is predicted by Eq. 9. The slope of a linear least squares fit
through the measured points is then used to evaluate the acoustic nonlinearity
parameter 3.

Results and Discussion
For both sets of composites. the second and third order elastic constants are

calculated using measured ultrasonic velocities and their strain derivatives.
respectively. Their values are listed in Table 2. It has to be noted that the third

Table 2. Second and third order elastic constants of MMCs

SOEC [GPa] TOEC |GPa
A n E v ! m n
Al-8091 449 30 %02 030 218 SR 435
~10% SiC 463 358 917 0.28  -185 -365 454
~15% SiC 460 3.1 969 027 ~162  -360 -423
Al-7064 593 274 734 034 324 -397 0 -d3

“15% SiC 570 M7 910 0.3 =25 -397 484
+20% SiC 576 8.1 991 030 214 397 46l
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Table 3. Nonlinearity parameters ot metal-matrix composites as
caleulated from elastic constants and measured from harmonic gen-

eration
BiEqg. 12)  Rel. change @ (meas.) Rel. change

Al-8091 8.2 0% 10.2 07
=-10% SiC 12.6 -177% 8.3 - 170
-15% SiC .S - 2407 T8 - 267
Al-7064 16.6 0% X.6 0%
- 1587 SiC 13.0 -22% 6.9 -0
-20% SiC 12.1 =277 s9 -31%

order elastic constants of the composites are determined using formulas which
were derived for isotropic materials. although the micrographs reveal some
anisotropic particle distribution. This mayv attect the absolute value of the third
order elastic constants determined in these composites. It is assumed. how-
ever. that changes in these values due to ditferent particle content is not at-
fected.

The data in Table 2 indicate a considerable increase in the magnitudes of
the Young's modulus £ and the shear modulus u with the SiC-particle content.
At the same time. the Poisson’s ratio v is reduced. The experimental error in
these constants is estimated to be within 27%. One can also see from Table 2 that
the changes in the third order elastic constants are less pronounced. The inac-
curacy in these values is 15% for /. 55 for m and 3% for n. Only in the case of
the constant /. a clear influence of reinforcement is observed. Its magnitude
decreases when SiC-particles are added to the matrix. The value of the con-
stant /. however, saturates at higher particie content in the composite. For the
constants /m and n. no significant trend can be observed.

The values of the second and third order elastic constants are used to
calculate the nonlinearity parameters according to Eq. 7 and their values are
listed in Table 3. The inaccuracy in the calculated noniinearity parameter s
estimated to be 109%. Also included in Table 3 are the values of the nonlineanty
parameter determined directly from the harmonic generation experiments.
Here. the inaccuracy is estimated to be of the order of 157. From the data in
Table 3. one can see that both calculated and experimentally measured noniin-
earity parameters decrease considerably with increasing particle content.

Table 3 also indicates that the experimentally measured values of the
acoustic nonlinearity parameter are about 509 smaller than those calculated.
This difference may be caused by the anisotropy in the elastic properties due to
the particle alignment as well as the texture in the aluminum matrix [10]. The
values of the directly measured nonlinearity parameter are obtained using lon-
gitudinal waves which propagate along the extrusion direction while those
calculated are obtained using second and third order clastic constants mea-
sured in the transverse direction. Because of the strong dependence of the
nonlinearity parameter on the crystallographic orientation of single crystals.
texture is likely to introduce significant anisotropy in this parameter. Further-
more. inaccurate absolute values of the third order elastic constants. due to the
use of formulas which are only valid for isotropic materials. may contribute to
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the observed difference. Good agreement. however. is tound in the relative
changes of the measured and calculated nonlinearity parameters. As can be
seen from Fig. 6. the relative change in the nonlinearity parameter with the SiC
content indicates a linear relationship between the two quantities. The relative
change ts in the order of 309 over the range ot 209 volume fraction ot SiC-
particles added to the Al-allovs.

An explanation for the decrcasing values ot the nonlinearity parameter in
MMCs may be tound by separately analvzing the contributions of the second
and the third order clastic constants shown in Eq. 7. The second order elastic
constants appear in the denominator of Eq. 7 and. accordingly. their increase
with particle content will yield a decrease in the nonlinearity parameter. The
increase in these constants is determined by the elastic moduli of the constitu-
ents of the composite as well as the interface between reinforcement and ma-
trix. Theorcticaily. the upper and lower limits for the clastic moduli of two
phase materials are determined by the isostrain and isostress conditions |11].
The third order constants in the numerator of Eq. 7 decrease in magnitude as a
function of particle content and. thus. their contributions also lower the values
of the nonlinearity parameter in the composites. However. it appears that the
contributions of the second order clastic constants dominate the magnitude of
the etfective nonlinearity parameter in the composite. especially at higher
amounts of reinforcement.

This analysis can also be applied to the results obtained bv Razvi et al. on
Al-7075 alloys containing different amounts of second phase precipitates which
are shown in Fig. 7. Here. the nonlinearity parameter was measured using
harmonic generation and found to increase with the volume fraction of second
phase. Also included in Fig. 7 are the results obtained on the Al-7064 metal-
matrix composites. Unlike the SiC-particle reinforced Al-7064 MMCs, the
change in the second order elastic constants of Al-7075. due to the presence of
precipitates. is found to be very small [1]. On the other hand. the presence of
the second phase precipitates is responsible for a high degree of distortion in
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the matrix. which is the effective hardening mechanism in such alloys. Conse-
quently, the denominator of Eq. 9 remains approximately constant. Unfortu-
nately. the etfect of second phase precipitates on the third order elastic con-
stants  of Al-7075 was not determined. However. measurements of
acoustoelastic constants on steel [12] «nd heat treatable aluminum alloys |13]
indicate that these constants increase as the amounts of second phase precipi-
tates in these alloys are increased. These results, nevertheless. show that the
third order elastic constants in these alloys are likely totincrease as a function
of second phase precipitates. and. in turn. contribute to the increase of the
acoustic nonlinearity parameter which is opposite to that observed in netal-
matrix composites.

Conclusions

The sccond and third order elastic constants as well as the acoustic nonlinearity
parameter have been determined in metal-matrix compesites consisting of SiC-
particles up to 2077 volume fraction and Al-7064 or *.i-8091. The results show
that the acoustic nonlinearity parameter is significuntlyv influenced by the vol-
ume fraction of the second phase reinforcement present in the composite. The
third order elastic constants m and n remain 1 achanged while the constant [ as
well as the nonlinearity parameter decrense as the volume fraction of SiC-
particies is increased. This behavior can be explained in terms of the increase of
the effective second order elastic constants and the decrease of the effective
third order elastic constants with :cinforcement. This argument can also be
used to explain the increase in the acoustic nonlinearity parameter as a function
of second phase precipitates vbserved by Razvi et al. in the aluminum alloy
7075S.
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